Claim Missing Document
Check
Articles

Found 4 Documents
Search

Pengenalan Pojok Statistik Sejak Dini dan Ilmu Data Sains Bagi Siswa dan Guru di SMAN Kota Samarinda Meirinda Fauziyah; Sifriyani Sifriyani; Sri Wahyuningsih; Suyitno Suyitno; Andrea Tri Rian Dani; Siti Mahmuda; Hadi Koirudin
Journal of Research Applications in Community Service Vol. 2 No. 3 (2023): Journal of Research Applications in Community Service
Publisher : Universitas Nahdlatul Ulama Sunan Giri Bojonegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32665/jarcoms.v2i3.2263

Abstract

Pendidikan merupakan bentuk usaha sadar seseorang untuk mengembangkan potensi diri agar memiliki kekuatan spiritual, keagamaan, serta keterampilan diri. Pada masa kini keterampilan diri terfokus dalam urgensi data yang banyak dibutuhkan di sektor industri dengan keahlian menganalisis masalah dan menghasilkan insight untuk menjawab kepentingan manusia di masa depan dengan mengenal ilmu data sains. Data sains merupakan cabang ilmu gabungan dari statistika, pendekatan sains, Artificial Intelligence (AI) untuk menganalisis sebuah big data sampai menghasilkan kesimpulan yang mudah dipahami. Tujuan kegiatan PKM ini memberikan pemahaman informasi pojok statistik sebagai wadah ilmu statistik kepada siswa dan guru sejak dini, membagikan informasi pengembangan ilmu data sains terkini menjadi seorang data scientist. Pelaksanaan kegiatan ini menggunakan metode Participatory Learning and Action (PLA) dengan melibatkan siswa/siswi dan guru. Hasil dari kegiatan ini menunjukkan bahwa terdapat perbedaan pemahaman sebelum dan setelah diberikan pemahaman ilmu data sains.
Aplikasi Model ARIMAX dengan Efek Variasi Kalender untuk Peramalan Trend Pencarian Kata Kunci “Zalora” pada Data Google Trends Andrea Tri Rian Dani; Sri Wahyuningsih; Fachrian Bimantoro Putra; Meirinda Fauziyah; Sri Wigantono; Hardina Sandariria; Qonita Qurrota A'yun; Muhammad Aldani Zen
Inferensi Vol 6, No 2 (2023)
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j27213862.v6i2.15793

Abstract

ARIMAX is a method in time series analysis that is used to model an event by adding exogenous variables as additional information. Currently, the ARIMAX model can be applied to time series data that has calendar variation effects. In short, calendar variations occur due to changes in the composition of the calendar. The purpose of this study is to apply the ARIMAX model with the effects of calendar variations to forecast search trends for the keyword "Zalora". Data were collected starting from January 2018 to November 2022 in the form of a weekly series. Based on the results of the analysis, the ARIMAX model is obtained with calendar variation effects with ARIMA residuals (1,1,1). Forecasting accuracy using the Mean Absolute Percentage Error (MAPE) of 10.47%. Forecasting results for the next 24 periods tend to fluctuate and it is estimated that in April 2023 there will be an increase in search trends for the keyword "Zalora".
K-Means Algorithm for Grouping Provinces in Indonesia Based on Macroeconomic and Criminality Indicators Andrea Tri Rian Dani; Fachrian Bimantoro Putra; Meirinda Fauziyah; Sifriyani Sifriyani; Suyitno Suyitno; M Fathurahman
Jurnal Statistika Universitas Muhammadiyah Semarang Vol 11, No 2 (2023): Jurnal Statistika Universitas Muhammadiyah Semarang
Publisher : Department Statistics, Faculty Mathematics and Natural Science, UNIMUS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26714/jsunimus.11.2.2023.12-21

Abstract

Cluster analysis is a method in multivariate analysis to group n observations into K groups (K ≤ n) based on their characteristics. One of the well-known algorithms in cluster analysis is K-Means. K-Means uses the non-hierarchical principle where at the initial initiation, it is necessary to determine the number of groups in advance. The K-Means algorithm can be applied to classify provinces in Indonesia based on macroeconomic indicators (percentage of poor people, open unemployment rate, and Gini ratio) and crime rate (Crime rate). The ultimate goal of this research is of course to get optimal grouping results. The similarity measure used is Euclidean Distance. The number of groups tested K=2,3,4,…,10 and the optimal number of groups with the highest Silhouette value was selected. Based on the results of the analysis, the optimal number of clusters is four. These four clusters have characteristics that distinguish one cluster from another.
Pemodelan Kadar Hemoglobin pada Pasien Demam Berdarah di Kota Samarinda Menggunakan Regresi Semiparametrik Spline Truncated Andrea Tri Rian Dani; Fachrian Bimantoro Putra; Muhammad Aldani Zen; Sifriyani Sifriyani; Meirinda Fauziyah; Vita Ratnasari; Narita Yuri Adrianingsih
Jambura Journal of Probability and Statistics Vol 4, No 2 (2023): Jambura Journal Of Probability and Statistics
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjps.v4i2.18923

Abstract

This article discusses the innovation of statistical modeling in regression analysis with a semiparametric approach applied to health data. Regression analysis is a method in statistics that takes a lot of roles in statistical modeling. Regression analysis is used to model the relationship between the independent variable (x) and the dependent variable (y). There are three approaches to regression analysis, namely parametric, nonparametric, and a combination of the two, namely semiparametric. Semiparametric regression is used when the dependent variable has a known relationship with some of the independent variables and has an unknown pattern of a relationship with some of the other independent variables. The purpose of this study was to model hemoglobin levels in dengue fever patients, with the independent variables used being the number of hematocrits (x1) and the number of leukocytes (x2). The method used is spline truncated semiparametric regression. The truncated spline estimator was chosen for the nonparametric component because it has many advantages in modeling, one of which is being able to model patterns where the form of the relationship is unknown. The parameter estimation used is the maximum estimation. Selection of the optimal knot point using Generalized Cross-Validation (GCV). Based on the results of the analysis, the truncated spline semiparametric regression model was obtained which was applied to the hemoglobin level data in a model with three knots which have a coefficient of determination of 89.074%. Based on the results of testing the hypothesis simultaneously, it can be concluded that simultaneously the independent variable has a significant effect on the dependent variable. In the partial test, it is concluded that the variables x1 and x2 have a significant influence on the dependent variable y .