Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Applied Mathematics

Indeks Harga Komsumen (IHK) di Lampung Menggunakan Autoregressive Integrated Moving Average (ARIMA) Mika Alvionita Sitinjak; Nuramaliyah ‎
Indonesian Journal of Applied Mathematics Vol 3 No 1 (2023): Indonesian Journal of Applied Mathematics Vol. 3 No. 1 July Chapter
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat (LPPM), Institut Teknologi Sumatera, Lampung Selatan, Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35472/indojam.v3i1.1274

Abstract

The Consumer Price Index (CPI) is an indicator that influences economic growth. CPI is an index that calculates the average of price change of a group of goods and services consumed by households in a certain period of time. CPI is also used to measure inflation in a country. Inflation is described by changes in the CPI from time to time. To anticipate and minimize economic risks caused by inflation, forecasting will be carried out on CPI data. In this study, the CPI will be predicted for the next 6 months using the ARIMA (Autoregressive Integrated Moving Average) model. The result of this research shows that the ARIMA models that can be used to predict CPI are ARIMA (0,2,0), ARIMA (0,2,1), ARIMA (1,2,0), and ARIMA (1,2,1) . The selection of the best model is carried out based on the model that has the smallest AIC value. Based on this, the best model used to predict CPI is the ARIMA model (0,2,1) with an AIC value of 83.21. In addition, this model fulfills diagnostics with white noise residuals, so that forecasting results using this model will be more accurate.
Prediksi Terkena Diabetes menggunakan Metode K-Nearest Neighbor (KNN) pada Dataset UCI Machine Learning Diabetes S, Mika Alvionita
Indonesian Journal of Applied Mathematics Vol. 3 No. 2 (2023): Indonesian Journal of Applied Mathematics Vol. 3 No. 2 October Chapter
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat (LPPM), Institut Teknologi Sumatera, Lampung Selatan, Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35472/indojam.v3i2.1577

Abstract

Penelitian ini menggunakan algoritma K- Nearest Neighbor (KNN) untuk memprediksi resiko seseorang terkena diabetes. Variabel yang digunakan dalam prediksi adalah pregnancies, glucose, blood pressure, skin thickness, insulin, BMI, diabetes pedigree function, dan age. Analisis menunjukkan bahwa Glucose, BMI, dan Age memiliki korelasi tinggi dengan diagnosis diabetes, menjadikannya indikator yang kuat untuk prediksi. Melalui metode KNN dengan k=1, dilakukan evaluasi model menggunakan Confusion Matrix. Hasil menunjukkan akurasi sebesar 96%, precision sebesar 91,6%, sensitivitas sebesar 88,7%, dan MSE sebesar 0,1376. Temuan ini menunjukkan bahwa KNN dengan k=1 efektif dalam memprediksi diabetes berdasarkan variabel klinis. Informasi ini dapat memberikan manfaat dalam pencegahan dan pengobatan diabetes secara lebih efektif.