Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimization of Biodiesel Synthesis Process from Waste Cooking Oil in a Phased Array Ultrasonic Reactor Using Response Surface Methode Priscilla, Tiara; Ardycha Yudha Ramadhani, Muhammad; Prayogo, Wempi; Nurjannah, Nikmah; Achmad Parmadi, Faris; Arifin, Zainal
Al-Kimia Vol 11 No 2 (2023): DESEMBER
Publisher : Study Program of Chemistry - Alauddin State Islamic University of Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/al-kimia.v11i2.41555

Abstract

The research aims to optimize the process of biodiesel synthesis from used cooking oil using Response Surface Methodology (RSM) in ultrasonic phased array reactor. Used cooking oil, as a potential waste source, has been identified as a sustainable alternative feedstock for biodiesel production. The use of ultrasonic phased array reactors is expected to improve conversion efficiency through cavitation to produce high yields and purity of biodiesel. RSM used to obtain the optimal combination of transesterification reaction conditions, including variables such as feedstock ratio, catalyst concentration, and reaction time. A quantity of methanol and NaOH was transesterified in a reactor that had been filled with used cooking oil. The results showed the yield of biodiesel was achieved at 90.3250% with an optimum mole ratio of 1:7.59 (oil to methanol), a catalytic concentration of NaOH 0.14% by weight of oil and a reaction time of 15 minutes. The oil/methanol ratio is the most important operating parameter based on the ANOVA test. Based on the physical properties of biodiesel on density, kinematic viscosity, flash point, carbon residue and based on the results of GC-MS testing the biodiesel produced is in accordance with SNI 7182:2015.
Sintesis Biodiesel Dari Minyak Jelantah Dalam Reaktor Ultrasonik Priscilla, Tiara; Irwan, Muh.; Arifin, Zainal
Jurnal Energi Baru dan Terbarukan Vol 5, No 1 (2024): Maret 2024
Publisher : Program Studi Magister Energi, Sekolah Pascasarjana, Universitas Diponegoro, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jebt.2024.21938

Abstract

Waste cooking oil is considered promising alternative to biodiesel production as substitute for diesel fuel becauce it it is environmentally friendly, biodegradable, non-toxic, and renewable energy source. This study aims to obtain the optimum operating conditions of ultrasonic reactors in biodiesel production using Response Surface Methodology (RSM) method. RSM with CCD was used to determine effect of transducer distance (1-5 cm) and reaction time (5-20 minutes) on biodiesel yield, to determine optimal operating conditions and to optimize biodiesel yield. In this study, waste cooking oil was transesterified into biodiesel with ultrasonic waves to intensify reaction. Transesterification waste cooking oil was carried out in a sodium hydroxide catalyst using methanol. Solution inserted into the erlenmeyer with the transducer distance and reaction time to determined by RSM. Once the reaction time was reached, mixture of biodiesel and glycerol was separated in separate funnel. Biodiesel obtained was then washed and evaporated the remaining solvent. Biodiesel yield was obtained under 88.33% under optimal conditions of 1 cm transducer distance with reaction time 20 minutes. Reaction time was the most important parameter based on the ANOVA test. The properties biodiesel produced including kinematic viscosity, density, acid number, methyl ester contents and monoglicerida have met the requirements of standards SNI 7182: 2015.