Claim Missing Document
Check
Articles

Found 3 Documents
Search

Implementasi Metode Rapid Application Development Pada Sistem Informasi Laboratorium Berbasis Web (Kasus: Laboratorium Mikrobiologi dan Genetika Universitas Nasional) Prasetyo, Ricky Budhi; Nurhayati; Farahdinna, Frenda
Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Vol 8 No 4 (2024): OCTOBER-DECEMBER 2024
Publisher : Lembaga Otonom Lembaga Informasi dan Riset Indonesia (KITA INFO dan RISET)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jtik.v8i4.2258

Abstract

The Microbiology and Genetics Laboratory at the Faculty of Biology and Agriculture, National University, has a Laboratory Assistant who is technically responsible for managing various aspects of the laboratory. Laboratory management includes the administration of borrowing space, tools, books, as well as setting up the laboratory as a place for research and practicums. Administrative processes that are still manual cause delays in borrowing space, tools and books in the laboratory. To overcome this problem, this research aims to build a management information system (SIMLAB) that can help make laboratory assistants' tasks easier. System validation is carried out using the black box method. Chatbot system testing involves sentence similarity tests and word similarity test results. The test results show that if the similarity of sentences or words is more than 70%, the chatbot can identify questions and provide answers based on the dataset. However, if it is less than 70%, the chatbot will give the default answer "I don't understand the meaning of your question"
Evaluasi Responsivitas dan Akurasi: Perbandingan Kinerja ChatGPT dan Google BARD dalam Menjawab Pertanyaan seputar Python Heryanto, Yayan; Fauziah, F; Farahdinna, Frenda; Wijanarko, Sigit
Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Vol 9, No 1 (2024): Edisi Februari
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/jurasik.v9i1.731

Abstract

This reseach aims to evaluate the responsiveness and accuracy of two natural language processing systems, namely ChatGPT and Google BARD, in answering questions related to the Python programming language. The evaluation is conducted using the Bleu Score metric as an indicator of the accuracy of answers generated by both systems. This research involves experiments with various Python-related questions to measure the level of alignment with expected reference answers. The results indicate that the average Bleu Score for ChatGPT is 0.0088, while the average Bleu Score for Google BARD is 0.0073. Additionally, the response time for ChatGPT is recorded at 12.05 seconds, whereas Google BARD has a response time of 18.38 seconds. Although there is a small difference in accuracy, ChatGPT shows a slightly higher Bleu Score and faster response time compared to Google BARD. The conclusion of this research states that, in the context of answering questions related to the Python programming language, ChatGPT performs slightly better than Google BARD, measured in terms of answer accuracy and response time.
Algoritma K-Means Dan Early Warning System Pada Aplikasi Penugasan Dan Penilaian Hasil Kinerja Pegawai Berbasis Website Maulidan, Farhan Ikhsan; Fauziah, Fauziah; Farahdinna, Frenda
Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Vol 12, No 3: Desember 2023
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35889/jutisi.v12i3.1491

Abstract

Employee performance is the key to increasing competitiveness, especially in government agencies. However, not all companies have the right media to accommodate employee performance measurement, one of which is the Ministry of Education and Culture. So far, the performance of Ministry of Education and Culture employees has been measured manually, resulting in the potential for bias and loss of data due to the fact that the recording system is still paper-based. Therefore, researchers are trying to create an application called a performance system (SIJA) which helps to increase timeliness in completing assigned tasks. This research uses the early warning system (EWS) algorithm which is used as an early detection of each employee's task completion and uses the K-Means algorithm for filtering and grouping data results to assess employee performance. The result of this research is the availability of a system that makes it easier for Finance Bureau leaders to manage the performance of their employees. Based on tests with Katalon Studio, it shows that the SIJA application received the title "passed", which indicates that the application runs well.Kata kunci: Website; Performance system; K-Means; Early Warning System; Employee PerformanceAbstrakKinerja pegawai merupakan kunci dalam meningkatkan daya saing khususnya pada instansi pemerintahan. Namun demikian, tidak semua perusahaan memiliki media yang tepat untuk mengakomodir pengukuran kinerja pegawai salah satunya di Kemendikbudristek. Selama ini, kinerja pegawai Kemendikbudristek diukur secara manual sehingga berpotensi terjadi bias dan kehilangan data akibat sistem pencatatannya masih berbasis kertas. Oleh sebab itu, peneliti mencoba membuat suatu aplikasi yang dinamakan sistem kinerja (SIJA) yang membantu untuk meningkatkan ketepatan waktu dalam penyelesaian tugas yang diberikan. Penelitian ini menggunakan algoritma early warning system (EWS) yang digunakan sebagai deteksi dini terhadap penyelesaian tugas setiap pegawai dan menggunakan algoritma K-Means untuk filterisasi dan pengolompokan hasil data untuk hasil menilai performa pegawai. Hasil dari penelitian ini adalah tersedianya sistem yang mempermudah pimpinan Biro Keuangan dalam mengelola kinerja pegawainya. Berdasarkan uji dengan katalon studio memperlihatkan bahwa aplikasi SIJA mendapatkan predikat “passed” yang mengindikasikan bahwa aplikasi berjalan dengan baik.Â