Iin Fadliani
Laboratorium Statistika Ekonomi dan Bisnis FMIPA Universitas Mulawarman

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PERAMALAN DENGAN METODE SARIMA PADA DATA INFLASI DAN IDENTIFIKASI TIPE OUTLIER (Studi Kasus: Data Inflasi Indonesia Tahun 2008-2014) Iin Fadliani; Ika Purnamasari; Wasono Wasono
Jurnal Statistika Universitas Muhammadiyah Semarang Vol 9, No 2 (2021): Jurnal Statistika Universitas Muhammadiyah Semarang
Publisher : Department Statistics, Faculty Mathematics and Natural Science, UNIMUS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26714/jsunimus.9.2.2021.109-116

Abstract

Inflation is defined as rising prices of goods in general and continuously. The effect of inflation on the economy can cause the currency to decline, resulting in the country's economic power becoming weak. Time series data is data arranged in order of time or data collected over time. Changes in the inflation rate tend to make inflation data unstable and affect the forecasting process in the time series data. The method used in this study is the seasonal autoregressive integrated moving (SARIMA) method to predict the time series in one or two periods ahead. This study also used outlier identifiers on models that still have outlier tendencies in residuals. The forecasting results of the SARIMA method become inaccurate when residual data contains outliers. The presence of outlier data in residual data results in residuals is not a normal distribution. The method used obtained the best model results, namely the SARIMA model (0,1,1) (0,1,1)12 with inflation forecast value for January to May 2015 is in the range of 5-6 %. On SARIMA models (0,1,1) (1,1,1)12 and SARIMA models (1,1,0) (2,1,0)12 outliers are detected in residual are Additive Outlier (AO) and Temporary Change (TC) type.