Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Designing consensus algorithm for collaborative signature-based intrusion detection system Eko Arip Winanto; Mohd Yazid Idris; Deris Stiawan; Mohammad Sulkhan Nurfatih
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 1: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i1.pp485-496

Abstract

Signature-based collaborative intrusion detection system (CIDS) is highly depends on the reliability of nodes to provide IDS attack signatures. Each node in the network is responsible to provide new attack signature to be shared with other node. There are two problems exist in CIDS highlighted in this paper, first is to provide data consistency and second is to maintain trust among the nodes while sharing the attack signatures. Recently, researcher find that blockchain has a great potential to solve those problems. Consensus algorithm in blockchain is able to increase trusts among the node and allows data to be inserted from a single source of truth. In this paper, we are investigating three blockchain consensus algorithms: proof of work (PoW), proof of stake (PoS), and hybrid PoW-PoS chain-based consensus algorithm which are possibly to be implemented in CIDS. Finally, we design an extension of hybrid PoW-PoS chain-based consensus algorithm to fulfill the requirement. This extension we name it as proof of attack signature (PoAS).
Improvement detection system on complex network using hybrid deep belief network and selection features Sharipuddin Sharipuddin; Eko Arip Winanto; Zulwaqar Zain Mohtar; Kurniabudi Kurniabudi; Ibnu Sani Wijaya; Dodi Sandra
Indonesian Journal of Electrical Engineering and Computer Science Vol 31, No 1: July 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v31.i1.pp470-479

Abstract

The challenge for intrusion detection system on internet of things networks (IDS-IoT) as a complex networks is the constant evolution of both large and small attack techniques and methods. The IoT network is growing very rapidly, resulting in very large and complex data. Complex data produces large data dimensions and is one of the problems of IDS in IoT networks. In this work, we propose a dimensional reduction method to improve the performance of IDS and find out the effect of the method on IDS-IoT using deep belief network (DBN). The proposed method for feature selection uses information gain (IG) and principle component analysis (PCA). The experiment of IDS-IoT with DBN successfully detects attacks on complex networks. The calculation of accuracy, precision, and recall, shows that the performance of the combination DBN with PCA is superior to DBN with information gain for Wi-Fi datasets. Meanwhile, the Xbee dataset with information gain is superior to using PCA. The final result of measuring the average value of accuracy, precision, and recall from each IDSDBN test for IoT is 99%. Other results also show that the proposed method has better performance than previous studies increasing by 4.12%.