Rabei Raad Ali
Northern Technical University, Mosul, Iraq

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparison of DenseNet-121 and MobileNet for Coral Reef Classification Heru Pramono Hadi; Eko Hari Rachmawanto; Rabei Raad Ali
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 23 No 2 (2024)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i2.3683

Abstract

Coral reefs are a type of marine organism that has beauty and benefits for other sea creatures’ ecosystems. However, despite its beauty and usefulness, coral reefs are vulnerable to damage such as coral bleaching, which can impact other coral reef ecosystems. This research aims to classify digital images of healthy, bleached, and dead coral reefs. This research method is DenseNet-121 and MobileNet is based on Convolutional Neural Networks. This research uses a dataset from 1582 coral reef image data with three main classes: 720 were bleached, 150 were dead, and 712 were healthy. The testing process is carried out using several forms of split datasets, namely 60:10:30, 50:10:40, and 70:10:20. The test results obtained with a data sharing percentage of 60:10:30 show that MobileNet architecture achieved 88.00% accuracy, and DenseNet-121 achieved 91.57% accuracy. Using a data split percentage of 50:10:40, MobileNet achieved 84.51% accuracy, and DenseNet- 121 achieved 90.52% accuracy. Meanwhile, with a data separation percentage of 70:10:20, MobileNet achieved 85.48% accuracy, and DenseNet-121 achieved 92.74% accuracy.
Comparison of DenseNet-121 and MobileNet for Coral Reef Classification Heru Pramono Hadi; Eko Hari Rachmawanto; Rabei Raad Ali
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 23 No. 2 (2024)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i2.3683

Abstract

Coral reefs are a type of marine organism that has beauty and benefits for other sea creatures’ ecosystems. However, despite its beauty and usefulness, coral reefs are vulnerable to damage such as coral bleaching, which can impact other coral reef ecosystems. This research aims to classify digital images of healthy, bleached, and dead coral reefs. This research method is DenseNet-121 and MobileNet is based on Convolutional Neural Networks. This research uses a dataset from 1582 coral reef image data with three main classes: 720 were bleached, 150 were dead, and 712 were healthy. The testing process is carried out using several forms of split datasets, namely 60:10:30, 50:10:40, and 70:10:20. The test results obtained with a data sharing percentage of 60:10:30 show that MobileNet architecture achieved 88.00% accuracy, and DenseNet-121 achieved 91.57% accuracy. Using a data split percentage of 50:10:40, MobileNet achieved 84.51% accuracy, and DenseNet- 121 achieved 90.52% accuracy. Meanwhile, with a data separation percentage of 70:10:20, MobileNet achieved 85.48% accuracy, and DenseNet-121 achieved 92.74% accuracy.