Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perencanaan Perluasan Pembangkitan dan Transmisi Berkelanjutan Menggunakan MOPSO-BPSO di Jaringan Listrik Astuty; Zainal Sudirman
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 14 No 3: Agustus 2025
Publisher : This journal is published by the Department of Electrical and Information Engineering, Faculty of Engineering, Universitas Gadjah Mada.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jnteti.v14i3.20795

Abstract

As of 2023, approximately 85% of power plants operating in South Sulawesi relied on fossil fuels, such as coal, gas, and oil. To meet the increasing demand for electricity while reducing carbon emissions, it is essential to integrate renewable energy sources into the power system. Renewable energy not only helps conserve fossil fuels but also supports global environmental sustainability. South Sulawesi possesses significant hydro potential, offering opportunities to develop both small and large-scale hydroelectric power plants (pembangkit listrik tenaga air, PLTA). This study employed a multi-objective particle swarm optimization (MOPSO) approach to develop optimal scenarios for generation expansion planning (GEP), and binary particle swarm optimization (BPSO) to determine the necessary transmission expansion planning (TEP). The planning process was supported by long-term load forecasting using the moving average method based on historical electricity demand data in South Sulawesi. Results showed that the proposed integrated GEP and TEP optimization framework successfully identified an optimal scenario maximizing renewable energy used while ensuring transmission reliability. By 2030, PLTA is projected to contribute 67.9% of total electricity generation. Meanwhile, steam-fired power plants (pembangkit listrik tenaga uap, PLTU) become the mainstay with capacities reaching 437.5 MW. To support this scenario, nine new transmission lines are needed, along with the expansion of 25 existing lines to accommodate increased power flow within the interconnection system.