Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Control Systems and Optimization Letters

Genetic Algorithm-Optimized LQR for Enhanced Stability in Self-Balancing Wheelchair Systems Chotikunnan, Phichitphon; Khotakham, Wanida; Wongkamhang, Anantasak; Nirapai, Anuchit; Imura, Pariwat; Roongpraser, Kittipan; Chotikunnan, Rawiphon; Thongpance, Nuntachai
Control Systems and Optimization Letters Vol 2, No 3 (2024)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/csol.v2i3.161

Abstract

Balancing systems, exemplified by electric wheelchairs, require accurate and effective functioning to maintain equilibrium across many situations. This research looks at how well a standard linear quadratic regulator (LQR) and its genetic algorithm (GA)-optimized version keep an electric wheelchair stable when it stands on its own. The aim of the optimization was to improve energy economy, robustness, and responsiveness through the refinement of control settings. Simulations were performed under two scenarios: stabilizing the system from a tilt and recovering from an external force. Both controllers stabilized the system; however, the GA-optimized LQR demonstrated considerable improvements in control efficiency, decreased stabilization time, and enhanced response fluidity. It exhibited improved resilience to external disturbances, as indicated by a decrease in oscillations and an increase in fluid displacement recovery. These enhancements highlight the LQR's versatility, resilience, and appropriateness for real-world applications, including Segways, balancing robots, and patient wheelchairs. This study highlights the ability of evolutionary algorithms to enhance the effectiveness of traditional control systems in dynamic and unpredictable settings.
Optimizing Light Intensity with PID Control Alfian, Eriko; Ma'arif, Alfian; Chotikunnan, Phichitphon; Abougarair, Ahmed Jaber
Control Systems and Optimization Letters Vol 1, No 3 (2023)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/csol.v1i3.38

Abstract

Lighting is a fundamental cornerstone within interior design, possessing the capability to metamorphose spaces and evoke emotional responses profoundly. This principle applies to residential, industrial, and office domains, where lighting nuances are meticulously adjusted to enhance comfort and practicality. However, adequate luminance frequently intersects with energy wastage, often attributed to negligent light management practices. Mitigating this issue necessitates integrating light intensity controls adept at adapting to ambient luminosity and room-specific parameters. A prospective avenue encompasses incorporating a Proportional Integral Derivative (PID) control system synergized with light sensors. This research Implementing a closed-loop architecture, PID control utilizes feedback mechanisms to improve the precision of instrumentation systems. The PID methodology, consisting of Proportional, Integral, and Derivative control modalities, produces stable responses, accelerates system reactions, and diminishes deviations and overshooting by predetermined setpoints. The proposed Light Intensity Control System underpinned by PID methodology manifests as an exhibition of compelling outcomes drawn from empirical trials. The judicious selection of optimal parameters, specifically Kp = 0.2, Ki = 0.1, and Kd = 0.1, yielded noteworthy test outcomes: an ascent time of 0.0848, an overshoot of 6.5900, a culmination period of 0.4800, a settling period of 2.3032, and a steady-state error of 0.0300. Within this system, the PID controller assumes a pivotal role, orchestrating the regulation and meticulous calibration of light intensity to harmonize with designated criteria, thus fostering an environment of augmented energy efficiency and adaptability in illumination.Lighting is a fundamental cornerstone within interior design, possessing the capability to metamorphose spaces and evoke emotional responses profoundly. This principle applies to residential, industrial, and office domains, where lighting nuances are meticulously adjusted to enhance comfort and practicality. However, adequate luminance frequently intersects with energy wastage, often attributed to negligent light management practices. Mitigating this issue necessitates integrating light intensity controls adept at adapting to ambient luminosity and room-specific parameters. A prospective avenue encompasses incorporating a Proportional Integral Derivative (PID) control system synergized with light sensors. This research Implementing a closed-loop architecture, PID control utilizes feedback mechanisms to improve the precision of instrumentation systems. The PID methodology, consisting of Proportional, Integral, and Derivative control modalities, produces stable responses, accelerates system reactions, and diminishes deviations and overshooting by predetermined setpoints. The proposed Light Intensity Control System underpinned by PID methodology manifests as an exhibition of compelling outcomes drawn from empirical trials. The judicious selection of optimal parameters, specifically Kp = 0.2, Ki = 0.1, and Kd = 0.1, yielded noteworthy test outcomes: an ascent time of 0.0848, an overshoot of 6.5900, a culmination period of 0.4800, a settling period of 2.3032, and a steady-state error of 0.0300. Within this system, the PID controller assumes a pivotal role, orchestrating the regulation and meticulous calibration of light intensity to harmonize with designated criteria, thus fostering an environment of augmented energy efficiency and adaptability in illumination.