Claim Missing Document
Check
Articles

Found 14 Documents
Search

Dual Design PID Controller for Robotic Manipulator Application Chotikunnan, Phichitphon; Chotikunnan, Rawiphon
Journal of Robotics and Control (JRC) Vol 4, No 1 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i1.16990

Abstract

This research introduces a dual design proportional–integral–derivative (PID) controller architecture process that aims to improve system performance by reducing overshoot and conserving electrical energy. The dual design PID controller uses real-time error and one-time step delay to adjust the confidence weights of the controller, leading to improved performance in reducing overshoot and saving electrical energy. To evaluate the effectiveness of the dual design PID controller, experiments were conducted to compare it with the PID controller using least overshoot tuning by Chien–Hrones–Reswick (CHR)  technique. The results showed that the dual design PID controller was more effective at reducing overshoot and saving electrical energy. A case study was also conducted as part of this research, and it demonstrated that the system performed better when using the dual design PID controller. Overshoot and electrical energy consumption are common issues in systems that can impact performance, and the dual design PID controller architecture process provides a solution to these issues by reducing overshoot and saving electrical energy. The dual design PID controller offers a new technique for addressing these issues and improving system performance. In summary, this research presents a new technique for addressing overshoot and electrical energy consumption in systems through the use of a dual design PID controller. The dual design PID controller architecture process was found to be an effective solution for reducing overshoot and saving electrical energy in systems, as demonstrated by the experiments and case study conducted as part of this research. The dual design PID controller presents a promising solution for improving system performance by addressing the issues of overshoot and electrical energy consumption.
Evaluation of Single and Dual image Object Detection through Image Segmentation Using ResNet18 in Robotic Vision Applications Chotikunnan, Phichitphon; Puttasakul, Tasawan; Chotikunnan, Rawiphon; Panomruttanarug, Benjamas; Sangworasil, Manas; Srisiriwat, Anuchart
Journal of Robotics and Control (JRC) Vol 4, No 3 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i3.17932

Abstract

This study presents a method for enhancing the accuracy of object detection in industrial automation applications using ResNet18-based image segmentation. The objective is to extract object images from the background image accurately and efficiently. The study includes three experiments, RGB to grayscale conversion, single image processing, and dual image processing. The results of the experiments show that dual image processing is superior to both RGB to grayscale conversion and single image processing techniques in accurately identifying object edges, determining CG values, and cutting background images and gripper heads. The program achieved a 100% success rate for objects located in the workpiece tray, while also identifying the color and shape of the object using ResNet-18. However, single image processing may have advantages in certain scenarios with sufficient image information and favorable lighting conditions. Both methods have limitations, and future research could focus on further improvements and optimization of these methods, including separating objects into boxes of each type and converting image coordinate data into robot working area coordinates. Overall, this study provides valuable insights into the strengths and limitations of different object recognition techniques for industrial automation applications.
Design and Develop a Non-Invasive Pulmonary Vibration Device for Secretion Drainage in Pediatric Patients with Pneumonia Wongkamhang, Anantasak; Wuttipan, Nathamon; Chotikunnan, Rawiphon; Roongprasert, Kittipan; Chotikunnan, Phichitphon; Thongpance, Nuntachai; Sangworasil, Manas; Srisiriwat, Anuchart
Journal of Robotics and Control (JRC) Vol 4, No 5 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i5.19588

Abstract

The study aimed to develop a non-invasive pulmonary vibration device, specifically tailored for pediatric patients, to address a range of pulmonary conditions. The device employs a PID control system to ensure consistent and precise vibrations. The primary contribution of this research is the successful development, testing, and implementation of this innovative device. Utilizing technical components such as an Arduino, a vibration DC motor, and an ADXL335 accelerometer, the device was engineered to deliver stable and continuous vibrations even when subjected to external pressures or interactions with the patient. Controllers, including P, PI, PD, and PID types, were rigorously compared. The Ziegler-Nichols tuning technique was applied for meticulous evaluation of vibration control specifically within the context of this non-invasive pulmonary vibration device. Our findings revealed that the PID controller displayed superior accuracy in vibration control compared to P, PI, and PD controllers. Clinical trials involving pediatric patients showed that the PID-controlled device achieved treatment outcomes comparable to conventional methods. The device's precise control of vibration strength provides an added benefit, making it a well-tolerated, non-invasive treatment option for various pulmonary conditions in pediatric patients. Future research is necessary to assess the long-term effectiveness of the device and to facilitate its integration into standard clinical practice. In summary, this study represents a significant advancement in pediatric pulmonary care, demonstrating the critical role that PID control systems adapted for non-invasive pulmonary vibration devices can play in enhancing treatment precision and outcomes.
Optimizing Membership Function Tuning for Fuzzy Control of Robotic Manipulators Using PID-Driven Data Techniques Chotikunnan, Phichitphon; Chotikunnan, Rawiphon; Nirapai, Anuchit; Wongkamhang, Anantasak; Imura, Pariwat; Sangworasil, Manas
Journal of Robotics and Control (JRC) Vol 4, No 2 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i2.18108

Abstract

In this study, a method for optimizing membership function tuning for fuzzy control of robotic manipulators using PID-driven data techniques is presented. Traditional approaches for designing membership functions in fuzzy control systems often rely on the experience and knowledge of the system designer, which can lead to suboptimal performance. By utilizing data collected from a PID control system, the proposed method aims to enhance the precision and controllability of robotic manipulators through improved fuzzy logic control. A Mamdani-type fuzzy logic controller was developed and its performance was simulated in Simulink, demonstrating the effectiveness of the proposed optimization technique. The results indicate that the method can outperform conventional P control systems in terms of overshoot reduction while maintaining comparable transient response specifications. This research highlights the potential of the PID-driven data-based approach for optimizing membership function tuning in fuzzy control systems and offers valuable insights for the development and evaluation of fuzzy logic control in robotic manipulators. Future work may focus on further optimization of the tuning process, evaluation of system robustness under various operating conditions, and exploring the integration of other artificial intelligence techniques for improved control performance.
Adaptive Parallel Iterative Learning Control with A Time-Varying Sign Gain Approach Empowered by Expert System Chotikunnan, Phichitphon; Chotikunnan, Rawiphon; Minyong, Panya
Journal of Robotics and Control (JRC) Vol 5, No 1 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i1.20890

Abstract

This study explores the incorporation of time-varying sign gain into a parallel iterative learning control (ILC) architecture, augmented by an expert system, to enhance the performance and stability of a robotic arm system. The methodology involves iteratively tuning the learning control gains using time-varying sign gain guided by an expert system. Stability analysis, encompassing asymptotic and monotonic convergence, demonstrates promising results across multiple joints, affirming the effectiveness of the proposed control architecture. In comparison with traditional PID control, fixed gain ILC, and ILC with adaptive learning in the expert system, the analysis focuses on stability, precision, and adaptability, using root mean square error (RMSE) as a key metric. The results show that ILC with adaptive learning from the expert system consistently reduces RMSE, even in the presence of learning transients. This adaptability effectively controls the learning transients, ensuring improved performance in subsequent iterations. In conclusion, the integration of time-varying sign gain with expert system assistance in a parallel ILC architecture holds promise for advancing adaptive control in robotic systems. Positive outcomes in stability, precision, and adaptability suggest practical applications in real-world scenarios. This research provides valuable insights into the implementation of dynamic learning mechanisms for enhanced robotic system performance, laying the groundwork for future refinement in robotic manipulator control systems.
The Utilization of Fuzzy Logic Controllers in Steering Control Systems for Electric Ambulance Golf Carts Chotikunnan, Rawiphon; Chotikunnan, Phichitphon; Imura, Pariwat; Pititheeraphab, Yutthana; Thongpance, Nuntachai
International Journal of Robotics and Control Systems Vol 4, No 1 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i1.1333

Abstract

This study investigates methods to improve steering control for electric ambulance golf carts by conducting a comparative analysis of fuzzy logic controllers. The research assesses four control systems, PD controller, fuzzy PD controller, fuzzy PD+I controller, and PBC and PD+I type fuzzy logic controller, to determine their effectiveness in enhancing steering control. Simulink simulations are employed to evaluate the performance of these controllers under various conditions. Results indicate that the PBC and PD+I type fuzzy logic controller demonstrates superior performance, showing significant reductions in both rise time and settling time with minimal overshoot compared to other controllers. The findings underscore the potential of fuzzy logic controllers in enhancing steering control for electric vehicles. Future research should explore alternative control strategies and assess controller robustness under diverse operating conditions.
Comparative Analysis of Sensor Fusion for Angle Estimation Using Kalman and Complementary Filters Chotikunnan, Phichitphon; Khotakham, Wanida; Ma'arif, Alfian; Nirapai, Anuchit; Javana, Kanyanat; Pisa, Pawichaya; Thajai, Phanassanun; Keawkao, Supachai; Roongprasert, Kittipan; Chotikunnan, Rawiphon; Imura, Pariwat; Thongpance, Nuntachai
International Journal of Robotics and Control Systems Vol 5, No 1 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i1.1674

Abstract

In engineering, especially for robots, navigation, and biomedical uses, accurate angle estimation is absolutely crucial. Using data from the IMU6050 sensor, which combines accelerometer and gyroscope readings, this work contrasts two sensor fusion methods: the Kalman filter and the complementary filter. The aim of the research is to find the most efficient filtering method for preserving accuracy and resilience throughout several motion contexts, including low-noise (standard rotation) and high-noise (external disturbances). With an eye toward improving sensor accuracy in dynamic applications, the study contribution is a thorough investigation of filter performance under different noise levels. MATLAB quantified estimate accuracy using key metrics like root mean square error (RMSE) and mean absolute error (MAE). Under controlled noise levels, our approach included methodical error analysis of both filters. Results show that, especially under low-noise conditions, the Kalman filter beats the complementary filter in terms of lower MAE and RMSE; it also shows adaptability and robustness in high-noise environments with much fewer errors than accelerometer-only and complementary filter outputs. These results show the relevance of the Kalman filter in practical settings like robotic control, motion tracking, and possible biomedical equipment, including patient positioning systems and wheelchairs with balance control. Future studies might investigate the implementation of the Kalman filter in sophisticated systems requiring accuracy, such as telemedicine robots or autonomous navigation. This work develops sensor fusion techniques and offers understanding of consistent sensor data processing in several operating environments.
Genetic Algorithm-Optimized LQR for Enhanced Stability in Self-Balancing Wheelchair Systems Chotikunnan, Phichitphon; Khotakham, Wanida; Wongkamhang, Anantasak; Nirapai, Anuchit; Imura, Pariwat; Roongpraser, Kittipan; Chotikunnan, Rawiphon; Thongpance, Nuntachai
Control Systems and Optimization Letters Vol 2, No 3 (2024)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/csol.v2i3.161

Abstract

Balancing systems, exemplified by electric wheelchairs, require accurate and effective functioning to maintain equilibrium across many situations. This research looks at how well a standard linear quadratic regulator (LQR) and its genetic algorithm (GA)-optimized version keep an electric wheelchair stable when it stands on its own. The aim of the optimization was to improve energy economy, robustness, and responsiveness through the refinement of control settings. Simulations were performed under two scenarios: stabilizing the system from a tilt and recovering from an external force. Both controllers stabilized the system; however, the GA-optimized LQR demonstrated considerable improvements in control efficiency, decreased stabilization time, and enhanced response fluidity. It exhibited improved resilience to external disturbances, as indicated by a decrease in oscillations and an increase in fluid displacement recovery. These enhancements highlight the LQR's versatility, resilience, and appropriateness for real-world applications, including Segways, balancing robots, and patient wheelchairs. This study highlights the ability of evolutionary algorithms to enhance the effectiveness of traditional control systems in dynamic and unpredictable settings.
Hybrid Fuzzy-Expert System Control for Robotic Manipulator Applications Chotikunnan, Phichitphon; Roongprasert, Kittipan; Chotikunnan, Rawiphon; Pititheeraphab, Yutthana; Puttasakul, Tasawan; Wongkamhang, Anantasak; Thongpance, Nuntachai
Journal of Robotics and Control (JRC) Vol. 6 No. 1 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i1.24956

Abstract

This research examines a hybrid fuzzy-expert system for the control of robotic manipulators, integrating the flexibility of fuzzy logic with the analytical decision-making capabilities of expert systems. The hybrid system switches dynamically between triangle membership functions, which facilitate smooth transitions, and trapezoidal membership functions, which efficiently manage sudden step changes. This adaptive technique mitigates the shortcomings of independent fuzzy logic controllers, particularly their inconsistency across varied setpoints. Simulation outcomes demonstrate substantial decreases in overshoot and settling time, as well as enhanced adaptability and flexibility in dynamic settings. A comparison test shows that the hybrid system is better than separate triangular and trapezoidal fuzzy controllers because it chooses the best control strategy based on the setpoint attributes in real time. Although there are occasional compromises in accuracy (IAE and RMSE), the hybrid controller provides balanced performance appropriate for various robotic applications. The results confirm its viability as a dependable option for industrial and medical robots, particularly in applications necessitating precision control and adaptability.
Comparative Analysis of Fuzzy Membership Functions for Step and Smooth Input Tracking in a 3-Axis Robotic Manipulator Chotikunnan, Phichitphon; Chotikunnan, Rawiphon; Pititheeraphab, Yutthana; Puttasakul, Tasawan; Wongkamhang, Anantasak; Thongpance, Nuntachai
Journal of Fuzzy Systems and Control Vol. 3 No. 1 (2025): Vol. 3, No. 1, 2025
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v3i1.278

Abstract

Robotic manipulators are essential in industrial and medical applications, requiring precise control to improve efficiency and reduce errors. This research looks at how well fuzzy logic controllers using Gaussian, generalized bell, triangular, and trapezoidal membership functions can handle step and smooth inputs for a robot system that is meant to move materials. Critical metrics like steady-state values, overshoot, rise time, integral absolute error (IAE), and root mean square error (RMSE) were tested using five different methods. The results showed that both the Gaussian and extended bell functions found a good balance between being stable and being responsive. This made them useful for situations with moderate to high input levels. While triangular functions displayed enhanced responsiveness, they also revealed heightened overshoot. In contrast, trapezoidal functions demonstrated significant stability at high saturation levels, although they had challenges in attaining smooth transitions. These findings highlight the necessity of choosing membership functions according to particular application needs. This study investigates the utilization of hybrid methodologies and adaptive optimization strategies to improve fuzzy control systems. These concepts offer compelling approaches to improve accuracy and resilience in dynamic robotic settings.