Claim Missing Document
Check
Articles

Found 12 Documents
Search

Design and Develop a Non-Invasive Pulmonary Vibration Device for Secretion Drainage in Pediatric Patients with Pneumonia Wongkamhang, Anantasak; Wuttipan, Nathamon; Chotikunnan, Rawiphon; Roongprasert, Kittipan; Chotikunnan, Phichitphon; Thongpance, Nuntachai; Sangworasil, Manas; Srisiriwat, Anuchart
Journal of Robotics and Control (JRC) Vol 4, No 5 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i5.19588

Abstract

The study aimed to develop a non-invasive pulmonary vibration device, specifically tailored for pediatric patients, to address a range of pulmonary conditions. The device employs a PID control system to ensure consistent and precise vibrations. The primary contribution of this research is the successful development, testing, and implementation of this innovative device. Utilizing technical components such as an Arduino, a vibration DC motor, and an ADXL335 accelerometer, the device was engineered to deliver stable and continuous vibrations even when subjected to external pressures or interactions with the patient. Controllers, including P, PI, PD, and PID types, were rigorously compared. The Ziegler-Nichols tuning technique was applied for meticulous evaluation of vibration control specifically within the context of this non-invasive pulmonary vibration device. Our findings revealed that the PID controller displayed superior accuracy in vibration control compared to P, PI, and PD controllers. Clinical trials involving pediatric patients showed that the PID-controlled device achieved treatment outcomes comparable to conventional methods. The device's precise control of vibration strength provides an added benefit, making it a well-tolerated, non-invasive treatment option for various pulmonary conditions in pediatric patients. Future research is necessary to assess the long-term effectiveness of the device and to facilitate its integration into standard clinical practice. In summary, this study represents a significant advancement in pediatric pulmonary care, demonstrating the critical role that PID control systems adapted for non-invasive pulmonary vibration devices can play in enhancing treatment precision and outcomes.
Design and Construction of Electric Wheelchair with Mecanum Wheel Thongpance, Nuntachai; Chotikunnan, Phichitphon
Journal of Robotics and Control (JRC) Vol 4, No 1 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i1.17095

Abstract

This research aimed to design and construct an electric wheelchair with mecanum wheels that can move in any desired direction and speed based on the joystick controller. This represents a significant improvement over traditional electric wheelchairs, which are limited to linear movement in a single direction. The research contribution of this study is the development of an electric wheelchair with mecanum wheels that allows for improved mobility and independence for wheelchair users. The design includes a joystick controller and the use of an average filter to improve the processing of the joystick. This represents a significant improvement over traditional electric wheelchairs, which are limited to linear movement in a single direction. The design and construction of the electric wheelchair followed the ISO 2570-2555 guidelines and utilized Arduino DUE as the main processor for controlling the rotation of the wheels. The gain of speed and angle of the analog joystick were determined using the technique of finding the resultant vector to control the direction and speed of the wheels. The resulting electric wheelchair had a standard structure and was able to move in the desired direction and speed based on the movement of the joystick controller, demonstrating the success of the design and construction in achieving its objective. In conclusion, the development of joystick control for electric wheelchairs is important and allows for the creation of significantly novel and improved designs such as the electric wheelchair with mecanum wheels presented in this research. 
The Utilization of Fuzzy Logic Controllers in Steering Control Systems for Electric Ambulance Golf Carts Chotikunnan, Rawiphon; Chotikunnan, Phichitphon; Imura, Pariwat; Pititheeraphab, Yutthana; Thongpance, Nuntachai
International Journal of Robotics and Control Systems Vol 4, No 1 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i1.1333

Abstract

This study investigates methods to improve steering control for electric ambulance golf carts by conducting a comparative analysis of fuzzy logic controllers. The research assesses four control systems, PD controller, fuzzy PD controller, fuzzy PD+I controller, and PBC and PD+I type fuzzy logic controller, to determine their effectiveness in enhancing steering control. Simulink simulations are employed to evaluate the performance of these controllers under various conditions. Results indicate that the PBC and PD+I type fuzzy logic controller demonstrates superior performance, showing significant reductions in both rise time and settling time with minimal overshoot compared to other controllers. The findings underscore the potential of fuzzy logic controllers in enhancing steering control for electric vehicles. Future research should explore alternative control strategies and assess controller robustness under diverse operating conditions.
Comparative Analysis of Sensor Fusion for Angle Estimation Using Kalman and Complementary Filters Chotikunnan, Phichitphon; Khotakham, Wanida; Ma'arif, Alfian; Nirapai, Anuchit; Javana, Kanyanat; Pisa, Pawichaya; Thajai, Phanassanun; Keawkao, Supachai; Roongprasert, Kittipan; Chotikunnan, Rawiphon; Imura, Pariwat; Thongpance, Nuntachai
International Journal of Robotics and Control Systems Vol 5, No 1 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i1.1674

Abstract

In engineering, especially for robots, navigation, and biomedical uses, accurate angle estimation is absolutely crucial. Using data from the IMU6050 sensor, which combines accelerometer and gyroscope readings, this work contrasts two sensor fusion methods: the Kalman filter and the complementary filter. The aim of the research is to find the most efficient filtering method for preserving accuracy and resilience throughout several motion contexts, including low-noise (standard rotation) and high-noise (external disturbances). With an eye toward improving sensor accuracy in dynamic applications, the study contribution is a thorough investigation of filter performance under different noise levels. MATLAB quantified estimate accuracy using key metrics like root mean square error (RMSE) and mean absolute error (MAE). Under controlled noise levels, our approach included methodical error analysis of both filters. Results show that, especially under low-noise conditions, the Kalman filter beats the complementary filter in terms of lower MAE and RMSE; it also shows adaptability and robustness in high-noise environments with much fewer errors than accelerometer-only and complementary filter outputs. These results show the relevance of the Kalman filter in practical settings like robotic control, motion tracking, and possible biomedical equipment, including patient positioning systems and wheelchairs with balance control. Future studies might investigate the implementation of the Kalman filter in sophisticated systems requiring accuracy, such as telemedicine robots or autonomous navigation. This work develops sensor fusion techniques and offers understanding of consistent sensor data processing in several operating environments.
Genetic Algorithm-Optimized LQR for Enhanced Stability in Self-Balancing Wheelchair Systems Chotikunnan, Phichitphon; Khotakham, Wanida; Wongkamhang, Anantasak; Nirapai, Anuchit; Imura, Pariwat; Roongpraser, Kittipan; Chotikunnan, Rawiphon; Thongpance, Nuntachai
Control Systems and Optimization Letters Vol 2, No 3 (2024)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/csol.v2i3.161

Abstract

Balancing systems, exemplified by electric wheelchairs, require accurate and effective functioning to maintain equilibrium across many situations. This research looks at how well a standard linear quadratic regulator (LQR) and its genetic algorithm (GA)-optimized version keep an electric wheelchair stable when it stands on its own. The aim of the optimization was to improve energy economy, robustness, and responsiveness through the refinement of control settings. Simulations were performed under two scenarios: stabilizing the system from a tilt and recovering from an external force. Both controllers stabilized the system; however, the GA-optimized LQR demonstrated considerable improvements in control efficiency, decreased stabilization time, and enhanced response fluidity. It exhibited improved resilience to external disturbances, as indicated by a decrease in oscillations and an increase in fluid displacement recovery. These enhancements highlight the LQR's versatility, resilience, and appropriateness for real-world applications, including Segways, balancing robots, and patient wheelchairs. This study highlights the ability of evolutionary algorithms to enhance the effectiveness of traditional control systems in dynamic and unpredictable settings.
Hybrid Fuzzy-Expert System Control for Robotic Manipulator Applications Chotikunnan, Phichitphon; Roongprasert, Kittipan; Chotikunnan, Rawiphon; Pititheeraphab, Yutthana; Puttasakul, Tasawan; Wongkamhang, Anantasak; Thongpance, Nuntachai
Journal of Robotics and Control (JRC) Vol. 6 No. 1 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i1.24956

Abstract

This research examines a hybrid fuzzy-expert system for the control of robotic manipulators, integrating the flexibility of fuzzy logic with the analytical decision-making capabilities of expert systems. The hybrid system switches dynamically between triangle membership functions, which facilitate smooth transitions, and trapezoidal membership functions, which efficiently manage sudden step changes. This adaptive technique mitigates the shortcomings of independent fuzzy logic controllers, particularly their inconsistency across varied setpoints. Simulation outcomes demonstrate substantial decreases in overshoot and settling time, as well as enhanced adaptability and flexibility in dynamic settings. A comparison test shows that the hybrid system is better than separate triangular and trapezoidal fuzzy controllers because it chooses the best control strategy based on the setpoint attributes in real time. Although there are occasional compromises in accuracy (IAE and RMSE), the hybrid controller provides balanced performance appropriate for various robotic applications. The results confirm its viability as a dependable option for industrial and medical robots, particularly in applications necessitating precision control and adaptability.
Comparative Analysis of Fuzzy Membership Functions for Step and Smooth Input Tracking in a 3-Axis Robotic Manipulator Chotikunnan, Phichitphon; Chotikunnan, Rawiphon; Pititheeraphab, Yutthana; Puttasakul, Tasawan; Wongkamhang, Anantasak; Thongpance, Nuntachai
Journal of Fuzzy Systems and Control Vol. 3 No. 1 (2025): Vol. 3, No. 1, 2025
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v3i1.278

Abstract

Robotic manipulators are essential in industrial and medical applications, requiring precise control to improve efficiency and reduce errors. This research looks at how well fuzzy logic controllers using Gaussian, generalized bell, triangular, and trapezoidal membership functions can handle step and smooth inputs for a robot system that is meant to move materials. Critical metrics like steady-state values, overshoot, rise time, integral absolute error (IAE), and root mean square error (RMSE) were tested using five different methods. The results showed that both the Gaussian and extended bell functions found a good balance between being stable and being responsive. This made them useful for situations with moderate to high input levels. While triangular functions displayed enhanced responsiveness, they also revealed heightened overshoot. In contrast, trapezoidal functions demonstrated significant stability at high saturation levels, although they had challenges in attaining smooth transitions. These findings highlight the necessity of choosing membership functions according to particular application needs. This study investigates the utilization of hybrid methodologies and adaptive optimization strategies to improve fuzzy control systems. These concepts offer compelling approaches to improve accuracy and resilience in dynamic robotic settings.
Comparative Analysis of PID Tuning Methods for Speed Control in Mecanum-Wheel Electric Wheelchairs Thongpance, Nuntachai; Chotikunnan, Phichitphon; Wongkamhang, Anantasak; Chotikunnan, Rawiphon; Imura, Pariwat; Khotakham, Wanida; Nirapai, Anuchit; Roongprasert, Kittipan
Buletin Ilmiah Sarjana Teknik Elektro Vol. 7 No. 2 (2025): June
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v7i2.13046

Abstract

This study compares two PID controller tuning methods, particle swarm optimization (PSO) and Cohen-Coon, employed for speed control of an omnidirectional Mecanum-wheel electric wheelchair. Mecanum wheels improve maneuverability on powered mobility platforms; yet, controlling these systems is difficult due to nonlinearities and directional coupling effects. This work investigates the effectiveness of PSO as a sophisticated alternative to traditional PID tuning methods, effectively tackling this issue. This study evaluates P, PI, PD, and PID controllers tuned by both Cohen-Coon and PSO methods, applied to a DC motor system simulating real-world wheelchair actuation. Step response-based system identification models the motor using MATLAB/Simulink. Simulations of a 12V DC motor are examined using controlled-step time-domain inputs. Every controller configuration is subjected to evaluation for overshoot, root mean square error (RMSE), rise time, and settling time. The PSO-tuned PID controller exhibited enhanced performance, characterized by a rise time of 2.06 s, a settling time of 2.37 s, an overshoot of 0.78%, and an RMSE of 4.59, far surpassing the Cohen-Coon variant, which had a settling time of 6.12 s and an overshoot of 20.14%. The results indicate that PSO enhances both transient and steady-state performance in intricate and disturbance-sensitive systems, including Mecanum wheelchairs. Despite PSO's increased computing complexity during offline tuning and the necessity for meticulous parameter selection, its advantages can be precomputed and effectively utilized in real-time embedded systems. This study highlights the importance of safety, dependability, and responsiveness, illustrating that PSO is a scalable and efficient method for improving assistive robotic systems.
Enhancing MG996R Servo Motor Performance Using PSO-Tuned PID and Feedforward Control Chotikunnan, Phichitphon; Pititheeraphab, Yutthana; Angsuwatanakul, Thanate; Prinyakupt, Jaroonrut; Puttasakul, Tasawan; Chotikunnan, Rawiphon; Thongpance, Nuntachai
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1854

Abstract

The aim of this research is to improve the precision of factory-locked MG996R servo motors, which are frequently employed in biomedical and robotic applications. These motors are characterized by the absence of inherent feedback channels and adjustable internal settings. The proposed technique proposes a non-invasive control strategy that utilizes externally obtained feedback to enable closed-loop control without requiring any modifications to the interior circuitry. The scientific contribution consists of the development of an outer-loop PID control framework that has been optimized using Particle Swarm Optimization (PSO) and enhanced with feedforward compensation. By utilizing the inherent potentiometer, this method ensures the preservation of hardware integrity and enables real-time angle feedback. A model fit of 96.94% was achieved by establishing a second-order discrete-time model using MATLAB's System Identification Toolbox. Particle Swarm Optimization (PSO) was employed to optimize PID improvements offline by minimizing the Integral of Squared Error (ISE). In both experimental and simulated environments, the controller's effectiveness was assessed using 2 rad/s sine wave inputs and a 10° step. The PSO-PID with feedforward controller achieved optimal results, achieving an RMSE of 0.5313° and an MAE of 0.1630° in simulations, as well as an MAE of 0.8497° in hardware step response. The requirement for gain scaling in embedded systems was underscored by the instability of the standalone PSO-PID controller. This method offers a pragmatic, scalable solution for applications such as assistive robotics, prosthetic joints, and surgical instruments. In order to achieve sub-degree precision in safety-critical environments, future endeavors will entail the implementation of adaptive gain tuning and enhanced resolution sensing.
Noise-Reduced 3D Organ Modeling from CT Images Using Median Filtering for Anatomical Preservation in Medical 3D Printing Chotikunnan, Phichitphon; Chotikunnan, Rawiphon; Puttasakul, Tasawan; Khotakham, Wanida; Imura, Pariwat; Prinyakupt, Jaroonrut; Thongpance, Nuntachai; Srisiriwat, Anuchart
Journal of Robotics and Control (JRC) Vol. 6 No. 4 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i4.26665

Abstract

This study offers a systematic approach to improving the reconstruction of three-dimensional anatomical models from CT imaging data. The main difficulty tackled is the maintenance of internal bone features during denoising, essential for producing clinically relevant models. A nonlinear filtering strategy was implemented, utilizing a 3×3 median filter alongside manual refinement to eliminate salt-and-pepper noise while preserving anatomical information. The study presents a reproducible image-processing pipeline that improves structural clarity and enables material-efficient 3D printing while preserving internal bone integrity. A publicly available dataset including 813 anonymized chest CT scans (512×512 pixels, 16-bit grayscale) from Zenodo was employed. Preprocessing included grayscale normalization, brightness adjustment, and the application of median filters with kernel sizes from 3×3 to 9×9, followed by artifact removal using FlashPrint software before STL conversion. The 3×3 median filter achieved an excellent balance between noise reduction and anatomical clarity, outperforming mean filtering and larger kernels in maintaining edge detail. Although statistical evaluation was not conducted, visual analysis validated an 18.07 percent decrease in print time and a 17.88 percent reduction in filament consumption. The technology exhibited actual efficacy in generating high-quality anatomical models. Future endeavors will incorporate automated segmentation and sophisticated denoising methodologies to enhance applicability in surgical simulation, clinical education, and personalized healthcare planning.