Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Design and Develop a Non-Invasive Pulmonary Vibration Device for Secretion Drainage in Pediatric Patients with Pneumonia Wongkamhang, Anantasak; Wuttipan, Nathamon; Chotikunnan, Rawiphon; Roongprasert, Kittipan; Chotikunnan, Phichitphon; Thongpance, Nuntachai; Sangworasil, Manas; Srisiriwat, Anuchart
Journal of Robotics and Control (JRC) Vol 4, No 5 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i5.19588

Abstract

The study aimed to develop a non-invasive pulmonary vibration device, specifically tailored for pediatric patients, to address a range of pulmonary conditions. The device employs a PID control system to ensure consistent and precise vibrations. The primary contribution of this research is the successful development, testing, and implementation of this innovative device. Utilizing technical components such as an Arduino, a vibration DC motor, and an ADXL335 accelerometer, the device was engineered to deliver stable and continuous vibrations even when subjected to external pressures or interactions with the patient. Controllers, including P, PI, PD, and PID types, were rigorously compared. The Ziegler-Nichols tuning technique was applied for meticulous evaluation of vibration control specifically within the context of this non-invasive pulmonary vibration device. Our findings revealed that the PID controller displayed superior accuracy in vibration control compared to P, PI, and PD controllers. Clinical trials involving pediatric patients showed that the PID-controlled device achieved treatment outcomes comparable to conventional methods. The device's precise control of vibration strength provides an added benefit, making it a well-tolerated, non-invasive treatment option for various pulmonary conditions in pediatric patients. Future research is necessary to assess the long-term effectiveness of the device and to facilitate its integration into standard clinical practice. In summary, this study represents a significant advancement in pediatric pulmonary care, demonstrating the critical role that PID control systems adapted for non-invasive pulmonary vibration devices can play in enhancing treatment precision and outcomes.
Optimizing Membership Function Tuning for Fuzzy Control of Robotic Manipulators Using PID-Driven Data Techniques Chotikunnan, Phichitphon; Chotikunnan, Rawiphon; Nirapai, Anuchit; Wongkamhang, Anantasak; Imura, Pariwat; Sangworasil, Manas
Journal of Robotics and Control (JRC) Vol 4, No 2 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i2.18108

Abstract

In this study, a method for optimizing membership function tuning for fuzzy control of robotic manipulators using PID-driven data techniques is presented. Traditional approaches for designing membership functions in fuzzy control systems often rely on the experience and knowledge of the system designer, which can lead to suboptimal performance. By utilizing data collected from a PID control system, the proposed method aims to enhance the precision and controllability of robotic manipulators through improved fuzzy logic control. A Mamdani-type fuzzy logic controller was developed and its performance was simulated in Simulink, demonstrating the effectiveness of the proposed optimization technique. The results indicate that the method can outperform conventional P control systems in terms of overshoot reduction while maintaining comparable transient response specifications. This research highlights the potential of the PID-driven data-based approach for optimizing membership function tuning in fuzzy control systems and offers valuable insights for the development and evaluation of fuzzy logic control in robotic manipulators. Future work may focus on further optimization of the tuning process, evaluation of system robustness under various operating conditions, and exploring the integration of other artificial intelligence techniques for improved control performance.
Hybrid Fuzzy-Expert System Control for Robotic Manipulator Applications Chotikunnan, Phichitphon; Roongprasert, Kittipan; Chotikunnan, Rawiphon; Pititheeraphab, Yutthana; Puttasakul, Tasawan; Wongkamhang, Anantasak; Thongpance, Nuntachai
Journal of Robotics and Control (JRC) Vol. 6 No. 1 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i1.24956

Abstract

This research examines a hybrid fuzzy-expert system for the control of robotic manipulators, integrating the flexibility of fuzzy logic with the analytical decision-making capabilities of expert systems. The hybrid system switches dynamically between triangle membership functions, which facilitate smooth transitions, and trapezoidal membership functions, which efficiently manage sudden step changes. This adaptive technique mitigates the shortcomings of independent fuzzy logic controllers, particularly their inconsistency across varied setpoints. Simulation outcomes demonstrate substantial decreases in overshoot and settling time, as well as enhanced adaptability and flexibility in dynamic settings. A comparison test shows that the hybrid system is better than separate triangular and trapezoidal fuzzy controllers because it chooses the best control strategy based on the setpoint attributes in real time. Although there are occasional compromises in accuracy (IAE and RMSE), the hybrid controller provides balanced performance appropriate for various robotic applications. The results confirm its viability as a dependable option for industrial and medical robots, particularly in applications necessitating precision control and adaptability.