Claim Missing Document
Check
Articles

Found 3 Documents
Search

Power Management and Voltage Regulation in DC Microgrid with Solar Panels and Battery Storage System Mutlag, Ashraf Abdualateef; Abd, Mohammed Kdair; Shneen, Salam Waley
Journal of Robotics and Control (JRC) Vol 5, No 2 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i2.20581

Abstract

Photovoltaics are one of the most important renewable energy sources to meet the increasing demand for energy. This led to the emergence of Microgrid s, which revealed a number of problems, the most important of which is managing and monitoring their operation, this research contributes mainly by using a maximum power tracking algorithm Which depends on artificial neurons and integrating it with a proposed algorithm for energy management in Standalone DC Microgrid, in order to control the distribution of power and maintain the DC bus voltage level.  Maximum Power Point Tracking (MPPT) algorithm based on ANN+PID is used. Where ANN tracks the maximum power point by estimating the reference voltage using real-time data such as temperature and solar radiation. The PI controller reduces the error between the measured voltage and the reference voltage and makes the necessary adjustments in order to control the boost converter connected to the photovoltaic panels. While the process of controlling the DC bus voltage level is done by controlling the battery charging and discharging process through the power management algorithm and controlling the Bidirectional converter switches according to the battery’s state of charge. The simulation results obtained by used MATLAB Simulink are shown that the used MPPT algorithm achieved the maximum power with the least amount of fluctuation, the method's efficiency was 99.92%, and its accuracy was 99.85%, as well as the success of the power management algorithm controlling the battery charging/discharging process and maintaining the DC voltage level at the specified value in different operating scenarios.
Voltage Regulation and Power Management of DC Microgrid with Photovoltaic/Battery Storage System Using Flatness Control Method Mutlag, Ashraf Abdualateef; Abd, Mohommed Kdair; Shneen, Salam Waley
Journal of Robotics and Control (JRC) Vol 5, No 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.22530

Abstract

This research aims to propose a power management strategy (PMS) based on the flatness control method for a stand-alone DC microgrid system. The goal of the proposed strategy is to create an efficient PMS using nonlinear flatness theory in order to provide a constant DC bus voltage and the best possible power-sharing mechanism between the battery and the PV array. A maximum power point tracking (MPPT) technique based on an artificial neural network (ANN) to optimize the PV's power. Moreover, the suggested PMS technique was tested in a simulation environment based on MATLAB®/Simulink. The obtained results demonstrate that the proposed PMS method can stabilize the bus voltage under variations in load or solar radiation. Additionally, the PMS method reduced bus voltage spikes and guaranteed good power quality, which extended the battery's lifespan and increased its efficiency. Also, the proposed approach outperforms the standard PI approach in terms of tracking efficiency and has a lower rate of overshoot in the bus voltage under different load scenarios. Therefore, the method is effective when compared with the classical PI approach. The overshoot in the PI method is 58 V, while the overshoot in the DC voltage is 5 V in the proposed method. The tracking speed of the proposed system is very low, and the slower speed was observed in the classical method, and the rise time of PI was 7.9ms, while the proposed method equals 2.2ms.
Voltage Regulation and Power Management of DC Microgrid with Photovoltaic/Battery Storage System Using Flatness Control Method Mutlag, Ashraf Abdualateef; Abd, Mohommed Kdair; Shneen, Salam Waley
Journal of Robotics and Control (JRC) Vol. 5 No. 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.22530

Abstract

This research aims to propose a power management strategy (PMS) based on the flatness control method for a stand-alone DC microgrid system. The goal of the proposed strategy is to create an efficient PMS using nonlinear flatness theory in order to provide a constant DC bus voltage and the best possible power-sharing mechanism between the battery and the PV array. A maximum power point tracking (MPPT) technique based on an artificial neural network (ANN) to optimize the PV's power. Moreover, the suggested PMS technique was tested in a simulation environment based on MATLAB®/Simulink. The obtained results demonstrate that the proposed PMS method can stabilize the bus voltage under variations in load or solar radiation. Additionally, the PMS method reduced bus voltage spikes and guaranteed good power quality, which extended the battery's lifespan and increased its efficiency. Also, the proposed approach outperforms the standard PI approach in terms of tracking efficiency and has a lower rate of overshoot in the bus voltage under different load scenarios. Therefore, the method is effective when compared with the classical PI approach. The overshoot in the PI method is 58 V, while the overshoot in the DC voltage is 5 V in the proposed method. The tracking speed of the proposed system is very low, and the slower speed was observed in the classical method, and the rise time of PI was 7.9ms, while the proposed method equals 2.2ms.