Stocks with their inherent complexity and dynamic nature influenced by a multitude of external and internal factors, play a crucial role in investment analysis and trend prediction. As financial instruments representing ownership in a company, stocks not only reflect the company's performance but are also affected by external factors such as economic conditions, political climates, and social changes. In a rapidly changing environment, investors and analysts continuously develop models and algorithms to aid in making timely and effective investment decisions. This study applies a Sequential model to predict stock data using a LSTM neural network. The model consists of a single hidden LSTM layer with 200 units. The LSTM layer, the core element of this model, enables it to capture temporal patterns and long-term relationships within the data. The training and testing data were divided into 80% for training and 20% for testing. The Adam optimizer was chosen to optimize the model's learning process, with a learning rate of 0.001. Dropout techniques were applied to reduce overfitting, with a dropout rate of 0.4, along with batch normalization and ReLU activation functions to enhance model performance. Additionally, callback mechanisms, including ReduceLROnPlateau and EarlyStopping, were used to optimize the training process and prevent overfitting. The model was evaluated using MAE and MSE metrics on training, testing, and future prediction data. The results indicate that the model achieved high accuracy, with an MAE of 0.0142 on the test data. However, future predictions showed higher MAE values, suggesting room for improvement in long-term forecasting. The model's ability to accurately predict future stock closing prices can assist investors in making informed investment decisions.