Claim Missing Document
Check
Articles

Found 3 Documents
Search

Sistem Monitoring Tumbuh Kembang Balita (Studi Kasus : Puskesmas Mertoyudan II) Yogi Dwiki Darmawan; Deden Hardan Gutama; Dita Danianti; Wahit Desta Prastowo
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 6 (2024): Desember 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i6.8116

Abstract

Abstrak - Peran orang tua dalam perawatan sehari-hari balita, terutama dalam hal pemantauan dan pemberian makanan, sangat krusial. Namun, studi kasus di Puskesmas Mertoyudan II menunjukkan adanya kendala dalam pemantauan tumbuh kembang balita akibat keterbatasan waktu orang tua dan kurangnya informasi mengenai pentingnya pemantauan ini. Akibatnya, pemantauan tumbuh kembang sering kali tidak optimal, yang meningkatkan risiko masalah serius seperti stunting, yaitu kondisi gagal tumbuh akibat kurangnya asupan gizi yang memadai. Penelitian ini bertujuan mengi  mplementasikan metode Fuzzy Logic Tsukamoto pada Sistem Monitoring dan Rekomendasi Makanan Sehat Bagi Tumbuh Kembang Balita untuk membantu mempermudah proses pemantauan. Fitur-fitur yang dihadirkan meliputi rekam medis, rekomendasi makanan berbasis Fuzzy Logic Tsukamoto, jadwal imunisasi, dan riwayat rekomendasi makanan, yang diharapkan dapat membantu orang tua dan petugas kesehatan dalam melakukan pemantauan yang lebih efektif. Hasil penelitian menunjukkan bahwa sistem ini berhasil mempermudah proses pengawasan tumbuh kembang balita serta memberikan rekomendasi makanan yang tepat, sehingga dapat mencegah terjadinya stunting. Sistem juga memudahkan akses informasi bagi semua pihak yang berkepentingan, mengurangi risiko kesalahan dalam pemilihan nutrisi, dan meningkatkan efektivitas pemantauan kesehatan balita di lingkungan puskesmas.Kata kunci: Sistem Monitoring, Tumbuh Kembang Balita, Fuzzy Logic Tsukamoto, Stunting, Puskesmas, Peran Orang Tua. Abstract - The role of parents in the daily care of toddlers, especially in terms of monitoring and providing food, is very crucial. However, a case study at the Mertoyudan II Community Health Center shows that there are obstacles in monitoring the growth and development of toddlers due to parents' limited time and lack of information regarding the importance of this monitoring. As a result, growth and development monitoring is often not optimal, which increases the risk of serious problems such as stunting, which is a condition of failure to grow due to a lack of adequate nutritional intake. This research aims to implement Tsukamoto's Fuzzy Logic method in the Healthy Food Monitoring and Recommendation System for Toddler Growth and Development to help simplify the monitoring process. The features presented include medical records, Fuzzy Logic Tsukamoto-based food recommendations, immunization schedules, and history of food recommendations, which are expected to help parents and health workers carry out more effective monitoring. The research results show that this system has succeeded in simplifying the process of monitoring the growth and development of toddlers and providing appropriate food recommendations, thereby preventing stunting. The system also makes it easier to access information for all interested parties, reduces the risk of errors in nutritional selection, and increases the effectiveness of monitoring children's health in the health center environment.Keywords: Monitoring System, Toddler Growth and Development, Tsukamoto Fuzzy Logic, Stunting, Health Center, Parents' Role.
Sistem Pendukung Keputusan Lansia Berdasarkan Prioritas Pelayanan dalam Upaya Mengoptimalkan Posyandu Lansia Menggunakan Metode K-Means (Studi Kasus : Dusun Jetis Kelurahan Sendangsari) Ratih Rusmiyati; Andri Pramuntadi; Dita Danianti; Deden Hardan Gutama
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 6 (2024): Desember 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i6.8250

Abstract

Abstrak - Penelitian ini bertujuan untuk mengembangkan sistem pendukung keputusan yang mengoptimalkan pelayanan posyandu lansia melalui penerapan metode K-Means Clustering. Sistem ini dirancang untuk mengklasifikasikan data lansia berdasarkan prioritas pelayanan, yakni lansia prioritas yang memerlukan kunjungan posyandu langsung ke rumah, dan lansia non-prioritas yang dapat datang ke posyandu secara mandiri. Metode K-Means digunakan untuk mengelompokkan lansia ke dalam dua klaster utama berdasarkan beberapa parameter. Proses pengembangan sistem melibatkan pengumpulan data lansia dari Dusun Jetis, Kelurahan Sendangsari, Kecamatan Pajangan, Kabupaten Bantul. Setelah itu, data tersebut diolah menggunakan metode K-Means untuk menentukan klasterisasi lansia. Hasil pengujian menunjukkan bahwa sistem berhasil mengelompokkan lansia dengan akurasi yang memadai, sehingga memudahkan kader posyandu dalam menentukan lansia yang harus diprioritaskan untuk pelayanan rumah. Sistem pendukung keputusan ini diimplementasikan dalam platform berbasis web untuk mempermudah akses dan penggunaan oleh kader posyandu. Dengan adanya sistem ini, diharapkan pelayanan posyandu lansia dapat lebih efisien dan terarah sesuai dengan kondisi kesehatan lansia di wilayah tersebut. Kata kunci: Sistem Pendukung Keputusan, Posyandu Lansia, K-Means Clustering, Prioritas Pelayanan, Clustering Data. Abstract - This research aims to develop a decision support system that optimizes elderly healthcare services at community health posts (Posyandu Lansia) through the application of the K-Means Clustering method. The system is designed to classify elderly data based on service priority, identifying priority elders who require home visits and non-priority elders who can independently attend the Posyandu. The K-Means method is utilized to group the elderly into two primary clusters based on multiple parameters. The system development process involved collecting elderly data from Jetis Hamlet, Sendangsari Village, Pajangan District, Bantul Regency. This data was then processed using the K-Means method to determine the elderly clustering. Testing results indicate that the system effectively clusters the elderly with satisfactory accuracy, assisting Posyandu workers in identifying elderly individuals who should be prioritized for home-based services. This decision support system is implemented on a web-based platform to improve accessibility and ease of use for Posyandu staff. With this system in place, it is anticipated that elderly healthcare services will become more efficient and targeted according to the health conditions of the elderly in the area. Keywords: Decision Support System, Elderly Posyandu, K-Means Clustering, Service Priority, Data Clustering
Implementasi Logika Fuzzy Tsukamoto Terhadap Pengambilan KRS Mahasiswa Informatika Universitas Alma Ata Dhina Puspasari Wijaya; Salis Nizar Qomaruzaman; Andri Pramuntadi; Dita Danianti
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 6 (2024): Desember 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i6.8277

Abstract

Abstrak - Proses pengisian Kartu Rencana Studi (KRS) merupakan langkah krusial dalam perjalanan akademik mahasiswa di perguruan tinggi, yang tidak hanya mencakup pemilihan mata kuliah tetapi juga penjadwalan dan pengaturan kelas. Dalam konteks ini, Universitas Alma Ata berupaya meningkatkan efisiensi dan efektivitas pengisian KRS melalui implementasi sistem berbasis Fuzzy Tsukamoto. Penelitian ini bertujuan untuk mengembangkan sistem rekomendasi KRS yang dapat memberikan saran berdasarkan variabel seperti Indeks Prestasi Kumulatif (IPK), mata kuliah yang diulang, dan peminatan. Dengan sistem ini, mahasiswa diharapkan dapat merancang rencana studi yang lebih optimal, mengurangi beban kerja dosen pembimbing akademik (DPA), serta meminimalkan kesalahan dalam pengisian KRS yang sering terjadi pada sistem manual saat ini. Selain itu, sistem ini dirancang untuk mengatasi tantangan seperti keterlambatan pengisian KRS, kelalaian mahasiswa dalam mengetahui mata kuliah yang mengulang, serta memberikan fleksibilitas dalam aksesibilitas. Penelitian ini juga mengidentifikasi pentingnya konsultasi dengan DPA dalam proses perencanaan studi, serta menekankan perlunya sistem yang dapat beradaptasi dengan berbagai skenario akademis, termasuk program Merdeka Belajar Kampus Merdeka (MBKM) untuk kedepannya. Dengan demikian, implementasi logika Fuzzy Tsukamoto diharapkan dapat meningkatkan akurasi, efisiensi, dan personalisasi dalam pengisian KRS, serta mendukung mahasiswa dalam mencapai tujuan akademik dan profesional mereka secara tepat waktu..Kata kunci : Kartu Rencana Studi, Logika Fuzzy Tsukamoto, Sistem Rekomendasi Berbasis Website, Perencanaan Studi, Akademik Mahasiswa Abstract - The process of filling out the Study Plan Card (KRS) is a crucial step in the academic journey of students in higher education, which includes not only course selection but also scheduling and class arrangements. In this context, Alma Ata University seeks to improve the efficiency and effectiveness of filling KRS through the implementation of a Fuzzy Tsukamoto-based system. This research aims to develop a KRS recommendation system that can provide suggestions based on variables such as Cumulative Grade Point Average (GPA), repeated courses, and specializations. With this system, students are expected to be able to design a more optimal study plan, reduce the workload of academic supervisors (DPA), and minimize errors in filling out KRS that often occur in the current manual system. In addition, this system is designed to overcome challenges such as delays in filling out KRS, student negligence in knowing which courses are repeated, and providing flexibility in accessibility. This study also identifies the importance of consultation with DPA in the study planning process, and emphasizes the need for a system that can adapt to various academic scenarios, including the Independent Learning Independent Campus (MBKM) program for the future. Thus, the implementation of Fuzzy Tsukamoto's logic is expected to improve accuracy, efficiency, and personalization in filling out KRS, as well as support students in achieving their academic and professional goals in a timely manner. Keywords - Study Plan Card, Fuzzy Tsukamoto Logic, Website-Based Recommendation System, Study Planning, Student Academic