Claim Missing Document
Check
Articles

Found 3 Documents
Search

The notions of irreducible ideals of the endomorphism ring on the category of rings and the category of modules Hasnani, Fitriana; Fatimah, Meryta Febrilian; Puspita, Nikken Prima
Al-Jabar: Jurnal Pendidikan Matematika Vol 13 No 1 (2022): Al-Jabar: Jurnal Pendidikan Matematika
Publisher : Universitas Islam Raden Intan Lampung, INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/ajpm.v13i1.11139

Abstract

Let R commutative ring with multiplicative identity, and M is an R-module. An ideal I of R is irreducible if the intersection of every two ideals of R equals I, then one of them is I itself. Module theory is also known as an irreducible submodule, from the concept of an irreducible ideal in the ring. The set of R - module homomorphisms from M to itself is denoted by EndR(M). It is called a module endomorphism M of ring R. The set EndR(M) is also a ring with an addition operation and composition function. This paper showed the sufficient condition of an irreducible ideal on the ring of EndR(R) and EndR(M)
QUOTIENT SEMINEAR-RINGS OF THE ENDOMORPHISM OF SEMINEAR-RINGS Fatimah, Meryta Febrilian; Hasnani, Fitriana; Puspita, Nikken Prima
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 3 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (446.98 KB) | DOI: 10.30598/barekengvol16iss3pp887-896

Abstract

A seminear-ring is a generalization of ring. In ring theory, if is a ring with the multiplicative identity, then the endomorphism module is isomorphic to . Let be a seminear-ring. Here, we can construct the set of endomorphism from to itself denoted by . We show that if is a seminear-ring, then is also a seminear-ring over addition and composition function. We will apply the congruence relation to get the quotient seminear-ring endomorphism. Furthermore, we show the relation between c-ideal and congruence relations. So, we can construct the quotient seminear-ring endomorphism with a c-ideal.
The Ideal Over Semiring of the Non-Negative Integer Adillah, Aisyah Nur; Hasnani, Fitriana; Fatimah, Meryta Febrilian; Puspita, Nikken Prima
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 7, No 3 (2023): July
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v7i3.14997

Abstract

Assumed that (S,+,.) is a semiring. Semiring is a algebra structure as a generalization of a ring. A set I⊆S is called an ideal over semiring S if for any α,β∈I, we have α-β∈I and sα=αs∈I for every s in semiring S.  Based on this definition, there is a special condition namely prime ideal P, when for any αβ∈P, then we could prove that α or β are elements of ideal P. Furthermore, an ideal I of S is irreducible if Ia is an intersection ideal from any ideal A and B on S, then I=A or I=B. We also know the strongly notion of the irreducible concept. The ideal I of S is a strongly irreducible ideal when I is a subset of the intersection of A and B (ideal of S), then I is a subset of A, or I is a subset of B. In this paper, we discussed the characteristics of the semiring of the non-negative integer set. We showed that pZ^+ is an ideal of semiring of the non-negative integer Z^+ over addition and multiplication. We find a characteristic that 〖pZ〗^+  is a prime ideal and also a strongly irreducible ideal of the semiring Z^+ with p is a prime number.