Claim Missing Document
Check
Articles

Found 3 Documents
Search

Rotman Lens Size Reduction by Using Same-Size Double Rectangular Defected Ground Structures (DGSs) Method or Same-Size Double Rectangular Slots Method Rizky Hidayat Prasetyo; Eko Tjipto Rahardjo
Journal of Robotics, Automation, and Electronics Engineering Vol. 2 No. 1 (2024): March 2024
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/jraee.v2i1.555

Abstract

The need for dedicated communication keeps increasing. A technique to realize that is by using multibeam radiation. A Beamforming Network (BFN) is required to enable multibeam capability in array antennas. This study uses the Rotman Lens as BFN in the frequency of S-Band. The common problem with using Rotman Lens is that its conventional design size is quite large, mainly due to its transition leg ports. Transition leg ports are important to ensure the matching impedance between the lens and the array antenna ports the lens and the beam ports or the lens and the dummy port. The goal of this study is to reduce the size of Rotman lens transition legs by implementing simple and uniform size of slots or Defected Ground Structures (DGSs) methods for the ports of the Rotman Lens BFN. The method can minimize the length of the transition leg and allow the BFN to operate efficiently. The results revealed that the use of the same double-rectangular DGS technique and the same double-rectangular slots in ports can reduce the size of the Rotman lens. Compared to the conventional methods, the proposed method can reduce the size to almost 85 percent from its original size for this S-Band implementation. The other performances of the BFN, besides the size reduction, are not degraded by implementing the proposed methods.
Benchmark Analysis of Sampling Methods for RRT Path Planning Pratama, Gilang Nugraha Putu; Dhewa, Oktaf Agni; Priambodo, Ardy Seto; Baktiar, Faris Yusuf; Prasetyo, Rizky Hidayat; Jati, Mentari Putri; Hidayatulloh, Indra
Control Systems and Optimization Letters Vol 2, No 2 (2024)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/csol.v2i2.132

Abstract

Path planning is a crucial aspect of mobile robot navigation, ensuring that robots can safely travel from their initial position to the goal. In real-world applications, path planning is essential for autonomous vehicles, drones, warehouse robots, and rescue robots to navigate complex environments efficiently and safely. One effective method for path planning is the Rapidly-exploring Random Tree (RRT) algorithm, which is particularly practical in maze-like environments. The performance of RRT depends on the sampling methods used to explore the maze. Sampling methods are important because they determine how the algorithm explores the search space, affecting the efficiency and success of finding an optimal path. Poor sampling can lead to suboptimal or infeasible paths. In this study, we investigate different sampling strategies for RRT, specifically focusing on uniform sampling, Gaussian sampling, and the Motion Planning Network (MPNet) sampling. MPNet leverages a neural network trained on past environments, allowing it to predict promising regions of the search space quickly, unlike traditional methods like RRT that rely on random exploration without prior knowledge. This makes MPNet much faster and more efficient, especially in complex or high-dimensional spaces. Through a benchmarking analysis, we compare these methods in terms of their effectiveness in generating feasible paths. The results indicate that while all three methods are effective, MPNet sampling outperforms uniform and Gaussian sampling, particularly in terms of path length. The mean path length generated, based on a sample size of 30, is 13.115 meters for MPNet, which is shorter compared to uniform and Gaussian sampling, which are 18.27 meters and 18.088 meters, respectively. These findings highlight the potential to enhance path planning algorithms using learning-based sampling methods.
Produksi Video Profil Promosi Potensi Kalurahan Pacarejo Hendarto, Taufik; Sony, Arya; Aji, Purno Tri; Prasetyo, Rizky Hidayat; Jati, Ahmad Nugroho
Jurnal Pengabdian Masyarakat Bangsa Vol. 3 No. 8 (2025): Oktober
Publisher : Amirul Bangun Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59837/jpmba.v3i8.3245

Abstract

Promosi merupakan strategi penting dalam memperkenalkan potensi suatu daerah dan memperkuat identitas lokal. Kalurahan Pacarejo di Kecamatan Semanu, Kabupaten Gunungkidul, Daerah Istimewa Yogyakarta, memiliki potensi alam, usaha mikro, dan seni budaya yang beragam. Namun, promosi terhadap potensi tersebut masih terbatas dan belum terdokumentasi dalam bentuk media digital yang menarik. Untuk mendukung upaya pengenalan potensi Kalurahan, tim pengabdian dari Departemen Teknik Elektro dan Elektronika, Fakultas Vokasi, Universitas Negeri Yogyakarta melaksanakan kegiatan pengabdian masyarakat berupa pembuatan video profil promosi. Kegiatan dilaksanakan melalui dua tahap, yaitu tahap persiapan dan tahap pelaksanaan. Proses pelaksanaan meliputi dua tahap utama, yaitu perencanaan dan produksi video. Hasil akhir berupa video profil promosi berdurasi 4 menit 27 detik yang menampilkan potensi wisata alam, usaha mikro, serta seni budaya. Video profil promosi telah diserahkan kepada Kalurahan Pacarejo untuk digunakan sebagai media presentasi promosi. Kegiatan pengabdian ini memberikan kontribusi nyata dari perguruan tinggi untuk memperkuat citra Kalurahan Pacarejo sebagai destinasi wisata berbasis potensi lokal yang kreatif dan berdaya saing.