Claim Missing Document
Check
Articles

Found 3 Documents
Search

Implementasi Metodologi Agile Software Development pada Proyek Perangkat Lunak handrie noprisson
Jurnal Sistem Informasi dan E-Bisnis Vol 5 No 2 (2023): Juli
Publisher : LPPMPP Yayasan Sejahtera Bersama Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54650/jusibi.v5i2.521

Abstract

This research is a systematic literature review using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) as a method to gather literature on agile software development methodology from Google Scholar. The result of this study is a summary of 11 articles related to Agile software development. The recommendation of this study is the use of the GLUX framework. GLUX framework integrates Lean UX into Scrum to improve the sustainability of the rapid software development process. It aims to promote a user-centric mindset and collaborative UX activities during the development process using gamification techniques. GLUX is about self-reliant teams, creating a motivating environment, and fostering teamwork.
Metode Image Processing dan Deep Learning Untuk Pengembangan Automatic Number-Plate Recognition (ANPR) di Indonesia Handrie Noprisson
JUKOMIKA (Jurnal Ilmu Komputer dan Informatika) Vol. 7 No. 1 (2024): Juni 2024
Publisher : LPPMPP Yayasan Sejahtera Bersama Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54650/jukomika.v7i1.548

Abstract

Penelitian ini bertujuan untuk menganalisis informasi tentang analisis sentimen tentang terkait sentimen masyarakat pada lebih khusus pengguna platform media sosial tentang sentimen negatif atau positif terhadap pemilihan presiden di Indonesia dan menghasilkan ide-ide baru untuk penelitian model analisis sentiment selanjutnya. Metode systematic literature review (SLR) digunakan untuk meninjau dan mensintesis data penelitian. Penelitian ini mengusulkan model analisis sentimen untuk teks bahasa Indonesia dengan menggunakan metode long short-term memory network (LSTM) dengan metode praproses yaitu transformation, tokenization, stop word removal, lemmatization, dan pos tagging.
MOBILENET PERFORMANCE IMPROVEMENTS FOR DEEPFAKE IMAGE IDENTIFICATION USING ACTIVATION FUNCTION AND REGULARIZATION Handrie Noprisson; Vina Ayumi; Mariana Purba; Nur Ani
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5798

Abstract

Deepfake images are often used to spread false information, manipulate public opinion, and harm individuals by creating fake content, making developing deepfake detection technology essential to mitigate these potential dangers. This study utilized the MobileNet architecture by applying regularization and activation function methods to improve detection accuracy. ReLU (Rectified Linear Unit) enhances the model's efficiency and ability to capture non-linear features, while Dropout and L2 regularization help reduce overfitting by penalizing large weights, thereby improving generalization. Based on experimental results, the MobileNet model optimized with ReLU and Dropout achieved an accuracy of 99.17% in the training phase, 85.34% in validation, and 70.60% in testing, whereas the MobileNet model optimized with ReLU and L2 showed lower accuracy in the training and validation phases compared to Dropout but achieved higher accuracy in testing at 72.18%. This study recommends MobileNet with ReLU and L2 due to its better generalization ability when testing data (resulting from reduced overfitting).