Claim Missing Document
Check
Articles

Found 1 Documents
Search

KLASIFIKASI TINGKAT KECANDUAN INTERNET TERHADAP REMAJA PEKANBARU MELALUI PENDEKATAN ALGORITMA NAÏVE BAYES Mhd Ikhsanul Fikri; Elvia Budianita; Iwan Iskandar; Eka Pandu Cynthia
ZONAsi: Jurnal Sistem Informasi Vol. 6 No. 2 (2024): Publikasi Artikel ZONAsi: Periode Mei 2024
Publisher : Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/zn.v6i2.20191

Abstract

Penggunaan internet terus meningkat di kalangan remaja. Namun, kemampuan remaja dalam memilah aktivitas internet yang bermanfaat belum sepenuhnya terwujud. Menurut survei APJII 2022, penggunaan internet pada usia 13-18 tahun meningkat hingga 99,16%. Hal ini menunjukkan peningkatan signifikan terhadap kecanduan internet. Sehingga dilakukan penelitian untuk mengevaluasi akurasi klasifikasi kecanduan internet terhadap remaja Pekanbaru menggunakan data mining dengan algoritma Naïve Bayes. Data yang digunakan sebanyak 510 data melalui kusioner. Hasil penelitian dalam klasifikasi menerapkan pengujian 10-Fold Cross Validation dengan model data latih 459 data dan diuji pada 51 data untuk pengujian. Didapatkan bahwa nilai akurasi tertinggi yaitu pada fold ke-3 dengan nilai 98% memiliki nilai precision, recall, dan f1-score adalah 98%, 99%, dan 98%. Untuk nilai akurasi terendah yaitu pada fold ke-1 dengan nilai 86% memiliki nilai precision, recall, dan f1-score adalah 86%, 87%, dan 86%. Untuk performa rata-rata yang diperoleh melalui hasil 10-fold Cross Validation menunjukkan bahwa nilai accuracy, precision, recall, dan f1-score adalah 93%, 87,3%, 89,9%, dan 88,1%. Berdasarkan hasil rata-rata akurasi yang diperoleh sebesar 93% menunjukkan metode Naïve Bayes dapat mengklasifikasikan tingkat kecanduan internet yang terdiri atas 4 kelas yaitu normal, mild, moderate, severe.