This Author published in this journals
All Journal BULETIN FISIKA
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Studi Relasi Titik Panas Terhadap Indeks Standar Pencemaran Udara Berdasarkan Konsentrasi Karbon Monoksida di Kalimantan Barat Galuh Utamia Dillayati; Dwiria Wahyuni; Riza Adriat; Azrul Azwar; Zulfian Zulfian
BULETIN FISIKA Vol 25 No 1 (2024): BULETIN FISIKA February Edition
Publisher : Departement of Physics Faculty of Mathematics and Natural Sciences, and Institute of Research and Community Services Udayana University, Kampus Bukit Jimbaran Badung Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/BF.2024.V25.i01.p11

Abstract

Hotspots, indicating active fires and potential sources of air pollution, are a major concern due to their impact on air quality in West Kalimantan. In this study, an analysis was carried out regarding the relationship of hotspots to the Air Pollution Standard Index (ISPU) based on the carbon monoxide (CO) parameter. This study aimed to determine the relationship between forest fires and air pollution levels. The data used in this study is in the form of monthly average CO concentration data and coordinates of hotspots in 2017-2021. To determine the effect of CO concentration, CO concentration was converted into ISPU and then mapped using the Inverse Distance Weighting (IDW) interpolation method. In addition, the overlay technique is also applied to the map and the correlation coefficient calculation between ISPU data and hotspot data. The study results show that the annual average number of hotspots ranges from 769 to 3,612, while the average ISPU ranges from 22.21 to 59.03. The highest average number of hotspots occurred in 2019, with 3,612 hotspots and the highest average ISPU value of 59.03, categorized as moderate. However, when examined monthly, the highest average number of hotspots is observed in August and September, with 8,505 and 8,321 hotspots, respectively, and average ISPU values of 55.36 and 88.32, categorized as moderate. Furthermore, the correlation coefficient between the average number of hotspots and the average ISPU per month is 0.91, and per year is 0.98, indicating a very high relationship. Spatially, clustered hotspot locations correspond to higher ISPU values. This implies that as the number of hotspots increases, the ISPU value based on CO concentration increases.