Claim Missing Document
Check
Articles

Found 2 Documents
Search

Judge's Reasoning Against the Dispensation of Marriage of Minors Due to Pregnancy After the Enactment of Law No. 16 of 2019 (Study of the Pandan Religious Court) Emma Andini; Muhammad Yadi Harahap
Journal Equity of Law and Governance Vol. 5 No. 2
Publisher : Warmadewa Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55637/elg.5.2.10462.105-111

Abstract

Marriage Dispensation from the Court is a decision in the form of determining a dispensation for prospective male or female brides who have law number 16 of 2019 states that you must not have married before you turn 19 years old. Even if there is a legislation that restricts the minimum age at which one can be married, refer to this potential anomaly as underage marriage. Consequently, if a man and a woman get married before turning 19, it's referred to as underage marriage. The research methodology employed is normative juridical, which involves examining theoretical frameworks, concepts, pertinent statutory rules, and legislative procedures. Judges of the Pandan Religious Court were directly interviewed as part of the data collection process. According to research, the judge will allow the request for marriage dispensation under the legal rationale. Marriage dispensation is the term used to describe when a court permits a prospective husband and wife who are under the age of 19 to get married. To aid in the effective administration of justice, the Chief Justice of the Republic of Indonesia established Regulation of the Supreme Court of the Republic of Indonesia Number 5 of 2019 concerning Guidelines for Adjudicating Applications for Marriage Dispensation. Marriage dispensation applications are not clearly and thoroughly governed by statute. This regulation was drafted on November 20, 2019, and it was formally published on November 21 to ensure that everyone in society may read it and abide by it.
PENINGKATAN KINERJA PREDIKSI CACAT SOFTWARE DENGAN HYPERPARAMETER TUNING PADA ALGORITMA KLASIFIKASI DEEP FOREST Emma Andini; Faisal, Mohammad Reza; Rudy Herteno; Nugroho, Radityo Adi; Friska Abadi; Muliadi
Jurnal Mnemonic Vol 5 No 2 (2022): Mnemonic Vol. 5 No. 2
Publisher : Teknik Informatika, Institut Teknologi Nasional malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/mnemonic.v5i2.4793

Abstract

Prediksi cacat software adalah salah satu studi pada bidang Rekayasa Perangkat Lunak yang telah diteliti oleh banyak peneliti. Tujuan dari studi ini adalah untuk mencari tahu algoritma yang dapat memberikan kinerja prediksi cacat software yang lebih baik. Salah satu penelitian yang telah dilakukan adalah melakukan prediksi cacat software dengan menggunakan algoritma berbasis pohon seperti Decision Tree, Random Forest dan Deep Forest. Deep Forest adalah algoritma klasifikasi berbasis pohon yang baru yang merupakan perbaikan dari algoritma Random Forest. Namun implementasi Deep Forest dalam penelitian terdahulu masih belum memberikan kinerja yang maksimal. Hasil pada penelitian terdahulu menunjukan bahwa kinerja algoritma Deep Forest masih ada yang lebih rendah dibandingkan algoritma berbasis pohon yang lain. Pada penelitian ini berfokus pada peningkatan kinerja algoritma berbasis pohon dengan melakukan normalisasi pada dataset dan hyperparameter tuning pada algoritma klasifikasi dengan menggunakan pencarian grid. Dataset yang digunakan adalah 3 dataset dari ReLink yaitu Apache, Safe, dan Zxing. Setiap model prediksi divalidasi dengan Stratified 10-Fold Cross Validation dan kinerja dievaluasi menggunakan AUC. Dari hasil eksperimen yang didapatkan,hasil prediksi dari pendekatan yang diusulkan lebih baik daripada metode sebelumnya.