Claim Missing Document
Check
Articles

Found 2 Documents
Search

Faktor Penentu Keberhasilan Manajemen E-learning dan Minat Belajar Mahasiswa : (Studi kasus mahasiswa FTI Universitas Sebelas April Sumedang) Leni Nurhayati; Reny Rian Marliana; Sri Bekti Handayani Ningsih; Iyat Ratna K
Jurnal Teknik Mesin, Industri, Elektro dan Informatika Vol. 3 No. 3 (2024): September : JURNAL TEKNIK MESIN, INDUSTRI, ELEKTRO DAN INFORMATIKA
Publisher : Pusat Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/jtmei.v3i3.4152

Abstract

Along with the development of the digital era, the use of e-Learning has become inevitable. Almost all countries in the world, including Indonesia, are implementing e-learning in the world of education. However, to be able to implement e-learning successfully, there are several determining factors for success that must be met. The determining factors for the success of implementing e-learning cannot be separated from how management is carried out by an institution in implementing learning using e-learning. The success of e-learning implementation is also influenced by the level of user satisfaction. The successful implementation of e-learning can also influence students' interest in learning. The aim of this research is to determine the factors determining the success of e-learning implementation and their influence on students' interest in learning. The research method used is quantitative research. The conclusion obtained from the results of this research is that there are 2 factors that determine success in implementing e-learning, management of the content development process and management of the e-learning environment. E-learning environment management has a significant influence on four constructs of student learning interest, namely involvement, interest, acceptance and feelings of enjoyment. And management of the content development process has a significant effect on acceptance and feelings of enjoyment. So the research results show that E-Learning Environment management has a significant effect on interest in learning, while Content Development Process management for buying gas only has a significant effect on aspects of acceptance and feelings of pleasure.
Klasifikasi Status Indeks Desa Membangun Jawa Barat Menggunakan Algoritma XGBoost Shafira Agnia Latfalia; Reny Rian Marliana
Jurnal Riset Statistika Volume 4, No. 2, Desember 2024, Jurnal Riset Statistika (JRS)
Publisher : UPT Publikasi Ilmiah Unisba

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/jrs.v4i2.5011

Abstract

Abstract. Based on data from Statistics Indonesia 2020 shows that rural areas in West Java have an average poverty rate of 10,64%, which is higher than urban areas at 7,79%. To establish a measurable and sustainable village, the Ministry of Villages, Development of Disadvantaged Regions, and Transmigration of the Republic of Indonesia developed a composite index to determine the progress and independence of a village, called the Village Development Index. To overcome the time challenge in classifying Village Development Index in West Java with a very large number of villages, an effective algorithm is needed. Therefore, this research applied an ensemble algorithm which is called XGBoost. XGBoost was chosen because it can handle the complexity of large datasets with imbalanced data classes and can prevent overfitting. In addition, hyperparameter tuning is conducted to improve the model’s performance. The aim of this research is to determine how accurately the XGBoost algorithm can classifying the Village Development Index and to contribute positively to the development of strategies for village in West Java. Based on the analysis conducted on Village Development Index data in West Java 2020 using 52 variables with 4.249 training data and 1.063 testing data, the XGBoost model has been formed. The analysis results show that the accuracy, precision, recall and f1-score are 89%, 84%, 72% and 76% respectively. The high accuracy obtained indicates that the XGBoost model that is built can classify Village Development Index well and can be implemented. Abstrak. Data Badan Pusat Statistik tahun 2020 menunjukkan bahwa rata-rata wilayah perdesaan di Jawa Barat memiliki persentase kemiskinan sebesar 10,64% yang lebih tinggi dari wilayah perkotaan sebesar 7,79%. Dalam upaya melaksanakan pembangunan desa yang terukur dan berkelanjutan, Kementerian Desa, Pembangunan Daerah Tertinggal, dan Transmigrasi Republik Indonesia menyusun suatu indeks komposit untuk menentukan status kemajuan dan kemandirian suatu desa yang disebut Indeks Desa Membangun (IDM). Untuk mengatasi tantangan waktu dalam pengklasifikasian status IDM di Jawa Barat dengan jumlah desa yang sangat besar, diperlukan algoritma lain yang lebih efektif. Oleh karena itu, penelitian ini menerapkan algoritma ensemble, yaitu XGBoost. XGBoost dipilih karena mampu mengatasi kompleksitas dataset besar dengan kelas data yang tidak seimbang dan dapat mencegah overfitting. Selain itu, dilakukan hyperparameter tuning untuk meningkatkan performa model. Tujuan dari penelitian ini yaitu melihat seberapa akurat algoritma XGBoost dalam mengklasifikasikan status IDM dan diharapkan dapat memberikan kontribusi positif terhadap pengembangan strategi pembangunan di Jawa Barat. Berdasarkan analisis yang dilakukan pada data status IDM di Provinsi Jawa Barat tahun 2020 menggunakan 52 variabel dengan data training sebanyak 4.249 dan data testing sebanyak 1.063, telah dibentuk model XGBoost. Hasil analisis menunjukkan bahwa nilai accuracy, precision, recall, dan f1-score masing-masing sebesar 89%, 84%, 72%, dan 76%. Nilai accuracy yang diperoleh sudah tinggi sehingga model XGBoost yang dibangun sudah dapat mengklasifikasikan status IDM dengan baik dan dapat diimplementasikan.