RAMADHAN, ANGGA RAMDA
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Evaluasi Algoritma Pembelajaran Terbimbing terhadap Dataset Penyakit Jantung yang telah Dilakukan Oversampling MASRURIYAH, ANIS FITRI NUR; NOVITA, HILDA YULIA; SUKMAWATI, CICI EMILIA; ARIF, SITI NOVIANTI NURAINI; RAMADHAN, ANGGA RAMDA
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 8, No 2 (2023): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v8i2.242-253

Abstract

AbstrakPenyakit jantung mengalami peningkatan setiap tahunnya dan menjadi penyebab kematian tertinggi di Indonesia, terutama pada usia produktif. Pola makan yang tidak seimbang dan gaya hidup tidak sehat menjadi faktor penyebab prevalensi penyakit jantung yang tinggi. Bidang ilmu kedokteran mulai beradaptasi dan mengandalkan model prediksi otomatis berbasis komputer untuk diagnosis secara tepat dan akurat. Data tentang penyakit jantung seringkali memiliki ketidakseimbangan, yaitu jumlah data pada kelas minoritas lebih kecil daripada kelas mayoritas. Oleh karena itu, teknik oversampling seperti SMOTE dan ADASYN digunakan untuk menangani masalah ini. Hasil dari penelitian ini Algoritma Random Forest Classifier menjadi model perbandingan terbaik dengan akurasi sekitar 90,71%. Penerapan teknik oversampling SMOTE + Random Forest, akurasi dapat meningkat hingga sekitar 94,54% dengan kurva ROC sebesar 98,4%. Model diagnosa yang akurat dapat menjadi media bagi tenaga medis untuk mengambil langkah pencegahan yang tepat dan meningkatkan kualitas perawatan pasien.Kata kunci: ADASYN, Klasifikasi, Pohon Keputusan, Regresi, SMOTEAbstractHeart disease is rapidly increasing in Indonesia and has become the primary cause of death, particularly among those in their productive years. The prevalence of heart disease is due to unhealthy lifestyle choices and an imbalanced diet. The medical field is relying more heavily on computer-based automatic prediction models to ensure precise and accurate diagnoses. However, data on heart disease is frequently imbalanced, with fewer cases in the minority class. To resolve this issue, oversampling techniques such as SMOTE and ADASYN have been implemented. The study demonstrates that the Random Forest Classifier Algorithm is the most effective comparison model, with an accuracy rate of approximately 90.71%. By implementing the SMOTE + Random Forest oversampling technique, the accuracy rate increased to around 94.54%, with a ROC curve of 98.4%. A highly accurate diagnostic model is essential for enabling medical personnel to take appropriate preventive measures and enhance the quality of patient care.Keywords: ADASYN, Classification, Decision Tree, Regresi, SMOTE
Comparison of Machine Learning Models for Heart Disease Classification with Web-Based Implementation Ramadhan, Angga Ramda; Saefulloh, Nandang; Utami, Nisa; Diana, Muji; Utomo, Abiyyu Aji Prasetyo; Wicaksana, Yusuf Eka
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8744

Abstract

Heart disease has become one of the most concerning diseases in Indonesia according to research published in 2018 by the Health Ministry of Indonesia. Based on said research, 15 out of 1000 Indonesians suffer from heart disease. Furthermore, according to data published by the Health Ministry of Indonesia, 3 million premature deaths (under 60 years old) occurred in 2013 due to heart disease. Therefore, this research aims to develop a web-based system designed to aid health workers in screening for heart diseases and producing early diagnosis. In developing this system, 5 models were evaluated based on performance and the model with the best metrics was selected to be used in the final system. These models were: Logistic Regression, Decision Tree, Random Forest, Naïve Bayes, and K-Nearest Neighbours. SMOTE and ADASYN was also used to deal with imbalanced data, and the resulting balanced data was used as additional training scenarios in order to compare the result with algorithms trained using imbalanced data. Cross validation, accuracy, precision, recall, f1-score, and ROC with AUC were set as evaluation metrics. Results show that Random Forest trained with data balanced using ADASYN achieved the highest AUC score of 0.920. Meanwhile, Logistic Regression scored lowest with an AUC score of 0.500. These results indicate that Random Forest is the most suitable for this system Therefore, Random Forest was selected as the algorithm to be used in the final system. Furthermore, this system has been tested successfully using the black-box method and is ready to be implemented.