AbstrakEmosi merupakan bentuk respon manusia terhadap sesuatu. Pengenalan emosi menggunakan komputer dapat membantu para dokter untuk mengetahui emosi yang sedang dirasakan oleh seseorang berdasarkan aktivitas otak. Aktivitas otak dapat diketahui dengan cara merekam aktivitas sinyal Electroensephalogram (EEG). Sinyal EEG memiliki karakteristik yang berubah-ubah dan non stasioner sehingga membutuhkan metode yang dapat mengintegrasikan karakteristik temporal dan spasial. Pengenalan emosi menggunakan sinyal EEG berkaitan erat dengan pola konektivitas pada belahan otak manusia, karena setiap emosi akan memiliki pola konektivitas yang berbeda dalam belahan otak. Maka dari itu mempelajari pola konektivitas dalam belahan otak akan membantu dalam pengenalan emosi. Dan untuk menangani hal itu dibutuhkan metode deep learning yang dapat mengintegrasikan karakteristik temporal dan spasial dan dapat menerima masukan berupa pola konektivitas tersebut, metode yang dapat menanganinya yaitu, Graph Convolutional Network (GCN). Penelitian ini telah membuat sistem identifikasi emosi dengan tiga kelas menggunakan GCN dan menghasilkan akurasi data uji sebesar 35,52%.Kata kunci: Emosi; Deep Learning; Sinyal EEG; Spasial; Temporal; GCNAbstractEmotion is a form of human response to something. Emotion recognition using computers can help doctors to see the emotions that are being felt by a person based on brain activity. Brain activity can be known by recording electroencephalogram (EEG) signal activity. EEG signals have changing and non-stationary characteristics, requiring a method to integrate temporal and spatial characteristics. Emotion recognition using EEG signals is closely related to connectivity patterns in the human brain hemispheres because each emotion will have different connectivity patterns in the brain hemispheres. Therefore, studying the connectivity patterns in the cerebral hemispheres will help in emotion recognition. Moreover, a deep learning method is needed to integrate temporal and spatial characteristics and receive input in the form of connectivity patterns, a method that can handle Graph Convolutional Network (GCN). This research has created an emotion identification system with three classes using GCN and produced an accuracy of 35.52% of testing data.Keywords: Emotion; Deep Learning; EEG Signal; Spatial; Temporal; GCN