Claim Missing Document
Check
Articles

Found 4 Documents
Search

Pelatihan Pengelasan Dasar SMAW Pada Siswa SMK Bina Taruna Masaran Sragen Untuk Peningkatan Hard Skill Purwanto, Andi; Diama Rizky Septiawan; Wijoyo
Jurnal Pengabdian Ahmad Yani Vol. 3 No. 2 (2023): December
Publisher : Sekolah Tinggi Teknologi Industri (STTI) Bontang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53620/pay.v3i2.130

Abstract

Tujuan dari kegiatan pengabdian kepada masyarakat ini yaitu untuk meningkatan kemampuan siswa kelas XI dalam bidang pengelasan dasar SMAW. Peserta dari kegiatan ini adalah siswa SMK Bina Taruna Masaran Kabupaten Sragen. Adapun metode kegiatan yang dilaksanakan kepada siswa SMK Bina Taruna Masaran Kabupaten Sragen dalam bentuk peningkatkan pemahaman dasar-dasar pengelasan SMAW, pada kegiatan pengabdian ini siswa dibekali cara menyambung logam dengan posisi 3F . Kegiatan pengabdian masyarakat ini menghasilkan sebagai berikut : (1). Meningkatkan sumber daya manusia khususnya SMK yang memiliki keahlian profesional dengan ketrampilan, pengetahuan , serta etos kerja yang tinggi. (2). Mengenalkan siswa pada pekerjaan sistem pengelasan SMAW pada dunia industri sehingga pada saatnya mereka terjun ke dunia usaha atau lapangan pekerjaan (industry) yang sesungguhnya dapat beradaptasi dengan cepat (3). Mempersiapkan sumber daya manuasia berkualitas yang sesuai dengan SMK Bina Taruna disimpulkan sebagai berikut : (1). Dengan adanya kegiatan pengabdian kepada masyarakat di SMK Bina Taruna Masaran Kabupaten Sragen ini maka memberikan pengetahuan, pemahaman sesuai dengan standar BNSP. (2). Memperkenal peralatan mesin las SMAW dan cara pemakaianya sesuai dengan prosudur keselamatan Kerja.
ANALISIS TEGANGAN STATIK STANDAR SAMPING SEPEDA MOTOR MATIC MENGGUNAKAN BAHAN STEEL ALLOY DENGAN SOFTWARE SOLIDWORK Ratna Fajarwati Meditama; Diama Rizky Septiawan; Agus Dwi Putra; Bisyri Nur Wahid
RING ME Vol 4 No 2 (2024): RING Mechanical Engineering
Publisher : Universitas Islam Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33474/rme.v4i2.22758

Abstract

This study presents a static stress analysis on the side stand of a matic motorcycle using Steel Alloy material, applying the finite element method and SolidWorks software. Motorcycles are a popular means of transportation, especially in rural areas where users often modify the side stand to support additional loads. The side stand is a critical component that allows the motorcycle to remain stable when parked. However, this component frequently encounters damage due to loads exceeding its initial design capacity. This research aims to evaluate the structural strength and safety factor of the side stand under a 2240 N load. Simulation results indicate that the maximum stress experienced remains below the yield strength of the Steel Alloy used. The obtained safety factor supports the material's application in side stand structures, provided that load limits are observed. This study is expected to contribute to the development of more load-resistant side stand designs, especially for rural usage needs.
Performance Evaluation of Motorcycle Racing Cast Wheels Under Dynamic Load Using Finite Element Method with Aluminum Material Agus Dwi Putra; Diama Rizky Septiawan; Yayi Febdia Pradani; Nicko Nur Rakhmaddian; Muhammad Arif Nur Huda
G-Tech: Jurnal Teknologi Terapan Vol 9 No 1 (2025): G-Tech, Vol. 9 No. 1 January 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/gtech.v9i1.6166

Abstract

The racing cast wheel made of aluminum 6061-T6 is a critical component in motor vehicles, particularly in supporting performance, safety, and aesthetics. This study aims to analyze the mechanical performance of the wheel through Finite Element Analysis (FEA) simulation. The FEA simulation was conducted using Ansys 18.1 software with a load of 1500 N, covering both static and dynamic loading conditions. The material tested is Aluminum Alloy 6061-T6, with material properties derived from tensile testing. The simulation results indicate that maximum stress occurs in critical areas, such as bolt holes and the intersection of spokes with the wheel rim, with a maximum stress value of 46.027 MPa. This stress level remains below the material's yield strength (276 MPa), demonstrating that the design is safe from plastic deformation. The total deformation observed is 0.053 mm, which is negligible and does not affect the wheel's functionality. A safety factor exceeding 2.5 confirms that the wheel can withstand more extreme loads. Based on these findings, design optimizations such as adding fillets and surface treatments are recommended to enhance the wheel's reliability. This research provides valuable insights for the development of stronger, lighter, and more durable wheels, particularly suited to the diverse road conditions found in Indonesia.
Analisis Kekuatan Desain Velg Kendaraan Ringan Menggunakan Metode Elemen Hingga: Pendekatan Inovatif untuk Keamanan dan Efisiensi Putra, Agus Dwi; Diama Rizky Septiawan; Muhammad Arif Nur Huda; Dewi Izzatus Tsamroh; Bella Cornelia Tjiptady
Jurnal Teknik Mesin Indonesia Vol. 20 No. 1 (2025): Vol. 20 No. 1 (2025): Jurnal Teknik Mesin Indonesia
Publisher : Badan Kerja Sama Teknik Mesin Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36289/jtmi.v20i1.816

Abstract

Car wheels are critical components responsible for bearing vehicle loads and ensuring stability during driving. This study aims to analyze the strength of car wheels using the Finite Element Method (FEM) with Solidworks 2020 software. The analyzed parameters include von mises stress, equivalent strain, displacement, and safety factor. Simulation results show a maximum stress of 1.978 × 10⁵ N/m² and a maximum strain of 2.449 × 10⁻⁶, within the safe limits of aluminum alloy material. A maximum displacement of 5.687 × 10⁻⁴ mm indicates sufficient structural stiffness of the wheel. The minimum factor of safety, 1.087 × 10³, suggests a high tolerance against failure. This study confirms that the wheel design is safe, efficient, and meets safety standards. The finite element method effectively identifies critical areas and optimizes the design before production. Validation through physical testing is recommended to ensure alignment with real-world conditions.