Claim Missing Document
Check
Articles

Found 2 Documents
Search

Growth, Development and Survival Rate of The Blue Swimming Crab (Portunus pelagicus) Cultured using Different Larvae Feeds Rabby, Ahmad Fazley; Rahman, Turabur; Islam, Zahidul; Hasan, Jakia; Aktaruzzaman, Md; Rahman, Shafiqur; Karim, Ehsanul; Ali, Md Zulfikar
ILMU KELAUTAN: Indonesian Journal of Marine Sciences Vol 29, No 1 (2024): Ilmu Kelautan
Publisher : Marine Science Department Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ik.ijms.29.1.147-155

Abstract

Blue swimming crab (Portunus pelagicus) is one of the most important commodities of softshell industry. Besides mud crab its demand as feed is increasing day by day. As a coastal dominant country, Bangladesh has a great feasibility of this species in culture, production, use and export. However, the production contribution from Bangladesh is still from natural sources and far behind in terms of farming, culture and production. Optimization of larval rearing techniques is therefore important to develop intensive hatchery rearing technique for this species. So, this study is aimed to develop larvae production technique of Portunus pelagicus with a better survival rate. Newly hatched first zoeal of Portunus pelagicus were reared using three different diets till second zoeal stage: (Treatment 1= Artemia franciscana umbrella + Rotifer (Brachionus rotundiformis); Treatment 2= Rotifer (B. rotundiformis) and Treatment 3= Artemia franciscana umbrella). Then, Artemia franciscana nauplii were used for all three treatments till they metamorphosed to crab instar. Regularly, water quality parameters were monitored and maintained and the survival and molting to next stages was observed. The result showed that, all the hatched zoea of P. pelagicus could successfully turns into crab instar stage under all the treatment applied, but the highest survival rate 6.08% was found in case of treatment 2 followed by 0.58%, 0.91%, respectively in treatment 1 and 3. In terms of metamorphosis, it took more than 15 and 14 days respectively from zoea 1 to metamorphose into megalopa for treatments 1 and 3, whereas metamorphosis from zoea 1 to megalopa in treatment 2 finished at the 12th day with a higher Larval Stage Index (LSI) value which was 4.9. Finally, at the 15th day larvae were metamorphosed into crablet for treatment 2 and 18 and 16 days required for metamorphosis into crablets for treatment 1 and 3, respectively. However, the larval feed showed a significant effect on growth and survival of P. pelagicus larvae, whereas the earlier larval stage of P. pelagicus rearing with Rotifer (B. rotundiformis) is found as the most suitable diet.
Synthesis of Aluminum Oxide Nanoparticle Adsorbents from Waste Aluminum Foil and Assesses Their Efficiency in Removing Lead (II) Ions from Water Aktaruzzaman, Md; Salam, Sayed M.A.; Mostafa, M.G.
Tropical Aquatic and Soil Pollution Volume 4 - Issue 2 - 2024
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/tasp.v4i2.497

Abstract

Aluminum oxide nanoparticles have recently been applied to water treatment as adsorbents by researchers. In this study, aluminum oxide nanoparticles (AlONPs) were synthesized using scrap aluminum foil through a straightforward, inexpensive, and green approach, and their performance in adsorbing lead (II) ions from an aqueous solution was assessed. The synthesized nanoparticles were characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDX) to analyze their bonding nature, particle size, phase composition, and surface morphology. They exhibited an average particle size of 32.73 nm, consisting predominantly of γ-Al2O3, with small amounts of α-Al2O3 and a minor unknown phase. The lead adsorption efficiency was evaluated under optimized parameters, including pH, contact time, and doses of both adsorbate and adsorbent. The results demonstrated that the AlONPs achieved a 98% removal efficiency within 30 minutes of contact time at a pH of 5.5. Additionally, the Freundlich adsorption isotherm model (R² value of 0.9972) and the pseudo-second-order kinetic model (qe) value of 37.97 mg/g) were shown to fit the lead adsorption process better than other models. Hence, the synthesized AlONPs offer potential as nanoparticle adsorbents for removing lead (II) ions from aqueous solutions.