Hartono, B.J Ridwan
Unknown Affiliation

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : OPSI

Optimizing product design and development of engine carbon cleaning maintenance tools using reverse engineering and VDI 2222 methods Wijaya, Dewa Kusuma; Hartono, B.J Ridwan; Jazuli, Jazuli; Izzhati, Dwi Nurul
OPSI Vol 17, No 1 (2024): ISSN 1693-2102
Publisher : Jurusan Teknik Industri Fakultas Teknologi Industri UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/opsi.v17i1.12032

Abstract

This research article explains the product design and development optimization of multi feature engine carbon cleaning maintenance tools. The implementation of the Reverse Engineering method was integrated with VDI 2222 in the research process. The results of the optimal design and development of this tool obtained a component structure that was able to meet 14 types of consumer needs with a total tool cost of IDR 1.137.900 with a total tool weight of 6.9 kg. The results of the load test simulation concluded that the housing case was able to withstand the overall weight of the components that make up the tool. Depending on the liquid chemical used, the results of tool tests on a limited scale have proven to be able in save fuel consumption by ±12.5% per hour with engine workload which can also be reduced by 3,14%.
Optimizing product design and development of engine carbon cleaning maintenance tools using reverse engineering and VDI 2222 methods Wijaya, Dewa Kusuma; Hartono, B.J Ridwan; Jazuli, Jazuli; Izzhati, Dwi Nurul
OPSI Vol 17 No 1 (2024): ISSN 1693-2102
Publisher : Jurusan Teknik Industri, Fakultas Teknologi Industri UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/opsi.v17i1.12032

Abstract

This research article explains the product design and development optimization of multi feature engine carbon cleaning maintenance tools. The implementation of the Reverse Engineering method was integrated with VDI 2222 in the research process. The results of the optimal design and development of this tool obtained a component structure that was able to meet 14 types of consumer needs with a total tool cost of IDR 1.137.900 with a total tool weight of 6.9 kg. The results of the load test simulation concluded that the housing case was able to withstand the overall weight of the components that make up the tool. Depending on the liquid chemical used, the results of tool tests on a limited scale have proven to be able in save fuel consumption by ±12.5% per hour with engine workload which can also be reduced by 3,14%.