Ratu Bunga Prawesti Arie Salim
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS SENTIMEN OPINI PUBLIK TERHADAP ATURAN PENGHAPUSAN KELAS BPJS PADA PLATFROM X MENGGUNAKAN MULTI-LAYER PERCEPTRON Ratu Bunga Prawesti Arie Salim; Dwi Cahya Julia Kartikasari; Muhammad Athoillah; Hani Brilianti Rochmanto
Seminar Nasional Hasil Riset dan Pengabdian Vol. 6 (2024): Seminar Nasional Hasil Riset dan Pengabdian (SNHRP) Ke 6 Tahun 2024
Publisher : LPPM Universitas PGRI Adi Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Analisis sentimen adalah bidang studi yang menganalisis opini dan sentimen seseorang terhadap suatu masalah. Penelitian ini menganalisis sentimen opini publik terhadap aturan penghapusan kelas BPJS yang akan diganti dengan KRIS menggunakan data dari platform X. Metode yang digunakan adalah Multi-Layer Perceptron (MLP), sebuah jenis neural network yang mampu menangani data kompleks dan hubungan non-linear. Fitur extraction dilakukan dengan Term Frequency – Inverse Document Frequency (TF-IDF), dan validasi menggunakan Confusion Matrix. Hasil penelitian menunjukkan bahwa model MLP mampu mengkategorikan sentimen dengan rata-rata akurasi 84.06%, menunjukkan efektivitas metode ini untuk analisis sentimen opini publik pada platform X. Kata kunci: Analisis sentimen; Multi-Layer Perceptron (MLP); Confusion Matrix
Pemodelan Kejadian Penyakit Tuberkulosis di Provinsi Jawa Barat Tahun 2023 Menggunakan Metode Geographically Weighted Negative Binomial Regression (GWNBR) Ratu Bunga Prawesti Arie Salim; Anuraga, Gangga
Mandalika Mathematics and Educations Journal Vol 7 No 2 (2025): Edisi Juni
Publisher : FKIP Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jm.v7i2.9318

Abstract

Tuberculosis (TB) is the leading cause of death due to infection by the bacteria Mycobacterium tuberculosis, which can attack the lungs and other organs. Reducing TB rates is one of the main targets in the Sustainable Development Goals (SDGs). In 2023, Indonesia will be ranked second in the world for TB cases after India, with West Java Province as one of the main contributors experiencing a significant increase, namely 160,966 cases in the productive age group (≥15 years) and 50,993 cases in the children's group (0–14 years). This study aims to analyze the factors that influence the number of TB cases in West Java Province in the productive age group using the Geographically Weighted Negative Binomial Regression (GWNBR) method, which considers spatial aspects between regions and is able to handle overdispersion problems in count data. The six independent variables tested include population density, percentage of public places that meet health requirements, number of hospitals, percentage of the population who smoke, air quality index, and number of HIV sufferers. The modeling results using the GWNBR method with Fixed Kernel Gaussian weighting produced ten regional groups, each with different risk factor characteristics for the number of TB cases.