Claim Missing Document
Check
Articles

Found 4 Documents
Search

Effect of natural dye combination and pH extraction on the performance of dye-sensitized photovoltaics solar cell Estiningtyas, Indri Wasa; Kusumawati, Nita; Setiarso, Pirim; Muslim, Supari; Rahayu, Nunik Tri; Safitri, Riska Nur; Zakiyah, Nafisatus; Fachrirakarsie, Fadlurachman Faizal
International Journal of Renewable Energy Development Vol 12, No 6 (2023): November 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.56172

Abstract

Dyes are significant components in Dye Sensitized Solar Cell (DSSC) performance because they act as photosensitizers. Natural dye-based DSSC system fabrication innovations continue to be produced in an effort to improve DSSC performance efficiency. In this study, a DSSC system was developed using double components of natural dyes as natural photosensitizers to enhance DSSC efficiency. This method of making natural dye-based DSSC uses a combination of dye extracts from two different dye sources that have the potential as natural photosensitizers in DSSC. The research aims to investigate the impact of the combined use of two natural dyes and pH variations on DSSC performance. DSSC performance measurements encompass the short-circuit current (Isc), open-circuit voltage (Voc), and DSSC efficiency parameters. The obtained results indicate efficiency values for dyes (a) sappan wood/ethanol and turmeric/methanol; (b) turmeric/methanol and beetroot/ethanol; and (c) beetroot/ethanol and turmeric/distilled water. At neutral pH, the efficiency values are 2.09%, 2.10%, and 2.19%, respectively. Meanwhile, at acidic pH of 2.59%; 2.39%; and 2.71%. Notably, the dye efficiency values at acidic pH surpass those found at neutral pH conditions. The highest efficiency is observed in the combination of dye (c) beetroot/ethanol and turmeric/distilled water with efficiency reaching 2.71% at acidic pH.
Optimization Thickness of Photoanode Layer and Membrane as Electrolyte Trapping Medium for Improvement Dye-Sensitized Solar Cell Performance Kusumawati, Nita; Setiarso, Pirim; Muslim, Supari; Hafidha, Qonita Arky; Cahyani, Sinta Anjas; Fachrirakarsie, Fadlurachman Faizal
Science and Technology Indonesia Vol. 9 No. 1 (2024): January
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2024.9.1.7-16

Abstract

Dye-Sensitized Solar Cells (DSSC) are photovoltaic devices that contain a dye that acts as a solar light acceptor. The use of dyesensitized solar cells to solve increasing energy demand and environmental problems still results in low efficiency values. In this study, optimization of DSSC components was carried out to increase DSSC efficiency by varying the thickness of the titanium dioxide (TiO2) semiconductor photoanode layer, polyvinylidene fluoride (PVDF) trap electrolyte membrane, and polyvinylidene fluoride nanofiber (PVDF NF) to obtain the optimum thickness. Scanning Electron Microscope (SEM) results of membrane thickness variation and titanium dioxide (TiO2) semiconductor photoanode coating showed the formation of nanofiber fibers composed of three-dimensional, porous, and diameter networks connected to the PVDF NF membrane. The increase in density and decrease in pore size, along with an increase in thickness and cracking as the TiO2 photoanode semiconductor layer increases, affect the electron transport rate of the DSSC. The higher particle density level will inhibit the electron transport rate, so it can reduce the efficiency of DSSC. The optimum thickness of the TiO2 semiconductor layer and PVDF NF electrolyte membrane of 0.20 mm and 0.35 mm can produce values, voltage, fill factor current density, and electrical efficiency of 500 mV, 2.7 x 10−3 mA.cm−2, 1.80%, and 2.40%, respectively.
Optimizing Dye-Sensitized Solar Cell (DSSC) Performance through Synergistic Natural Dye Combinations from Beta vulgaris L., Curcuma longa L., and Pandanus amaryllifolius Kusumawati, Nita; Setiarso, Pirim; Muslim, Supari; Zakiyah, Nafisatus; Rahmawati, Khofifatul; Fachrirakarsie, Fadlurachman Faizal
Indonesian Journal of Chemistry Vol 24, No 6 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.93830

Abstract

This study optimizes dye-sensitized solar cell (DSSC) performance using a combination of natural dye components extracted from Beta vulgaris L. (beetroot), Curcuma longa L. (turmeric), and Pandanus amaryllifolius (pandanus leaf). These plants were selected for their natural pigments—betacyanin, curcuminoids, and chlorophyll—which potentially act as DSSC sensitizers. Dyes were extracted via maceration with ethanol solvent (1:6 sample:solvent ratio) for 24 h. Filtrates were combined in various ratios to test DSSC performance. The optimal C4 dye combination, with a 2:1:1 ratio (betacyanin:curcumin:chlorophyll), demonstrated the best performance. The UV-vis analysis revealed complex interactions and synergistic effects among dye combinations, characterized by increased light absorption in the 400–700 nm range. Cyclic voltammetry analysis showed favorable energy band gap values, confirming the pigments' suitability for DSSC applications. FTIR analysis confirmed the stable coexistence of the three dyes without new bond formation. Photovoltaic performance testing showed the C4 three-dye combination achieved the highest energy conversion efficiency of 3.57%. These results demonstrate the potential of this dye combination to contribute to the development of sustainable and efficient solar energy conversion in DSSCs.
Optimizing Dye-Sensitized Solar Cell Efficiency with a Triple Blend of Caesalpinia sappan L., Dracaena angustifolia, and Clitoria ternatea L. Kusumawati, Nita; Rahmawati, Khofifatul; Setiarso, Pirim; Muslim, Supari; Zakiyah, Nafisatus; Fachrirakarsie, Fadlurachman Faizal
Molekul Vol 20 No 1 (2025)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2025.20.1.12063

Abstract

ABSTRACT. Dye-sensitized solar cells (DSSCs) offer a promising sustainable solution to global electricity challenges by converting sunlight into electricity using photosensitive dyes. This study explores the performance of DSSCs using natural dyes from sappanwood (Caesalpinia sappan L.), pandan leaves (Dracaena angustifolia), and telang flowers (Clitoria ternatea L.). Extraction of the dyes was done through maceration, with combinations made in single, double, and triple-component blends. UV-Vis spectroscopy showed increased light absorption in the 400-700 nm range. Combination F5 uniquely showed absorption peaks at 534.22, 573.64, 619.12, and 664.21 nm, which were affected by nine conjugated double bonds and electron transfer from C=C and carbonyl groups. Comparative band gap energy analysis showed that the triple-blending dyes exhibited the lowest energy range of 0.3392-0.4469 eV, compared to the double dye (0.4549-0.5778 eV) and single dye (0.4541-0.6248 eV), indicating better light harvesting ability. FTIR analysis confirmed the chemical structure of the dye. Prominent spectroscopic features include a broad band of 3332 cm-1 for hydroxyl groups, peaks at 2919 cm-1 and 1732 cm-1 representing alkane and carboxyl groups in cellulose, and an aromatic lignin C=C stretch at 1672 cm-1. The optimized F5 blend (1:2:1 ratio) achieved the highest solar cell efficiency of 3.24% with a band gap of 0.3392 eV. These results validate the potential of natural dye blends as DSSC sensitizers, showing enhanced absorption spectrum, improved stability, and increased electric current generation. Keywords: Dye-sensitized solar cells, Triple-component blending, Caesalpinia sappan L., Dracaena angustifolia, Clitoria ternatea L.