Claim Missing Document
Check
Articles

Found 3 Documents
Search

Modelling of Dengue Hemorrhagic Fever Disease in Semarang City Using Generalized Poisson Regression Model Septia, Siti Fajar; Hidayat, Muhamad Arif; Asyfani, Yusrisma; Haris, M. Al; Winaryati, Eny
Journal of Intelligent Computing & Health Informatics Vol 4, No 2 (2023): September
Publisher : Universitas Muhammadiyah Semarang Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26714/jichi.v4i2.12769

Abstract

Dengue Hemorrhagic Fever (DHF) is an infectious disease that can be life- threatening within a relatively short period of time and can be fatal if not promptly treated. DHF in Indonesia ranks second as a dangerous seasonal disease. DHF remains a serious issue in the Central Java Province, particularly in Semarang City. The cases of DHF can be modeled using a Poisson regression model due to the characteristics of DHF cases, which involve count data with small occurrence probabilities. The Poisson regression model assumes equality between the mean and variance (equidispersion). However, the application of the Poisson regression model often encounters violations of the assumption of excessive variance (overdispersion), which necessitates addressing the violation, and one possible approach is to use the Generalized Poisson Regression model. Based on the analysis results, the Generalized Poisson Regression model could handle the overdispersion because the ratio of Pearson Chi-Square by degrees of freedom was 0.976, approaching a value of 1. It has also been proven to be more suitable for evaluating factors influencing the number of DHF cases, as it has a lower AIC value compared to Poisson models, with a value of 123.64. The variables that were found to have an impact on DHF cases in Semarang City based on the Generalized Poisson Regression model are the number of larval habitats (X1), the number of hospitals (X2), population density (X3), and the number of healthcare workers (X4).
A Pengelompokan Kabupaten/Kota di Jawa Tengah Berdasarkan Kepadatan Penduduk Menggunakan Metode Hierarchical Clustering Asyfani, Yusrisma; Manfaati Nur, Indah; Fathoni Amri, Ihsan; Yunanita, Novia; Anggun Lestari , Febi; Aura Hisani, Zahra; Hikmah Nur Rohim, Febrian
Journal of Data Insights Vol 2 No 1 (2024): Journal of Data Insights
Publisher : Department of Sains Data UNIMUS Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26714/jodi.v2i1.158

Abstract

Jawa Tengah merupakan provinsi dengan urutan kelima di Indonesia berdasarkan kepadatan penduduk pada tahun 2020 sebanyak 1.113 jiwa/km2. Pengaruh kepadatan penduduk yang tinggi dapat menyebabkan berbagai masalah diantaranya kemacetan,pengangguran,kesehatan,kriminalitas serta permasalahan serius lainnya. Kepadatan penduduk dipengaruhi oleh angka kelahiran,angka kematian serta laju pertumbuhan, Untuk mengevaluasi kepadatan penduduk di provinsi Jawa Tengah, kita perlu mengklasifikasikan/mengelompokkan kabupaten/kota yang berada didalamnya. Pengelompokan ini bertujuan agar kebijakan yang dibuat oleh pemerintah dapat tepat sasaran. Metode yang dapat digunakan untuk pengelompokkan kabupaten.kota di provinsi Jawa Tengah berdasarkan kepadatan penduduknya yaitu Clustering Hierarchical Ward. Dari hasil analisis pengelompokan tersebut kabupaten/kota di provinsi Jawa Tengah dibagi menjadi empat kelompok berdasarkan kepadatan penduduknya.
Implementation of Hierarchical Clustering for Grouping Economic Development Indicators in Central Java Province: Penggunaan Clustering Hierarki Untuk Pengelompokan Indikator Pembangunan Ekonomi di Provinsi Jawa Tengah Salmaa; Asyfani, Yusrisma; Manfaati Nur, Indah
Journal of Data Insights Vol 3 No 1 (2025): Journal of Data Insights
Publisher : Department of Sains Data UNIMUS Universitas Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26714/jodi.v3i1.298

Abstract

In the midst of global economic shifts, the economy in Indonesia must continue to improve. To help economic recovery after the contraction caused by the COVID-19 pandemic, the Indonesian government has implemented various policies. One way is through the process of increasing per capita income over a long period of time, known as economic development, provided that the number of people living below the absolute poverty line does not increase and income distribution does not decrease. Other efforts can be made by analyzing economic development indicators. One method that can be used is hierarchical cluster analysis to group economic development indicators in Central Java province. Average linkage is used as an approach method after carrying out correlation analysis of the five approaches in hierarchical analysis because the correlation value is the highest. From this analysis two clusters were produced with the first cluster having higher characteristic values compared to the second cluster.