Claim Missing Document
Check
Articles

Found 3 Documents
Search

High Sensitivity CH4 and CO2 Gas Sensor Using Fiber Bragg Grating Coated with Single Layer Graphene Irawan, Dedi; Saktioto; Dwi Hanto; Widiyatmoko, Bambang; Sutoyo
Science and Technology Indonesia Vol. 9 No. 3 (2024): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2024.9.3.710-717

Abstract

This article outlines the development of a Fiber Bragg Grating (FBG) intended for use as a sensor for CH4 and CO2 gases. Following fabrication, the FBG was effectively treated with a layer of Graphene Material through a modified RF Sputtering process. This coating procedure involved introducing argon gas into the chamber and subjecting the FBG, securely held by two vacuum stages, to a temperature range of 27°C to 600°C by adjusting the power supplied to the cathode and anode, ranging from 0 to 125 Watts. Subsequently, the FBG was employed as a key sensing element within an experimental setup aimed at measuring gas concentrations within a confined space. The assessment involved analyzing the reflected signal of the FBG using an Optical Interrogator System, which demonstrated a shift in the Bragg wavelength of the reflected signal corresponding to varying gas concentrations. This study indicates promising outcomes for the Graphene-coated FBG as a gas sensor. The sensor’s sensitivity was evaluated based on the Bragg wavelength shift resulting from gas presence within the chamber. The Graphene-coated FBG exhibited sensitivities of 3.3 ppm for CH4 and 3.7 ppm for CO2, surpassing those reported in prior research efforts.
Utilizing Pometia Pinnata leaf extract in microwave synthesis of ZnO nanoparticles: Investigation into photocatalytic properties Sulistyo Rini, Ari; Rati, Yolanda; Maheta, Gema; Aji, Arie Purnomo; Saktioto
Communications in Science and Technology Vol 9 No 1 (2024)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.9.1.2024.1407

Abstract

In this work, ZnO photocatalyst has been synthesized using matoa (Pometia pinnata) leaf extract under various microwave irradiation powers at 360, 540, and 720 Watts for 3 minutes on each. The UV-Vis absorption spectra of ZnO exhibited a peak in the ultraviolet region 300-360 nm. UV-Vis absorption analysis revealed a decrease in the band gap energy from 3.15 eV to 3.10 eV as the irradiation power increased. Field emission scanning electron microscopy (FESEM) images displayed spherical and nanoplatelet morphology with a decrease in particle size observed from 773 to 709 nm with increasing irradiation power. X-ray diffraction (XRD) analysis confirmed the hexagonal wurtzite structure of ZnO with crystallite sizes in the range of ~18-20 nm. The synthesized ZnO nanoparticles was successfully employed as a photocatalyst in 4-nitrophenol degradation, achieving the highest degradation percentage of 82.7% at 540 Watts with a corresponding reaction rate constant of 0.0126/min. In conclusion, the microwave-assisted synthesis of ZnO using on matoa leaf extract demonstrated significant potential for the degradation of organic pollutants, thereby contributing to water purification efforts.
Investigation of Transmission and Reflection of Single Mode Fiber Bragg Grating Irawan, Dedi; Saktioto; Azhar; Hanto, Dwi; Widiyatmoko, Bambang
Jurnal Penelitian Pendidikan IPA Vol 10 No 6 (2024): June
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v10i6.7209

Abstract

The use of Single Mode Fiber Bragg Grating (SMFBG) has been increasing in recent years due to its compact size, low cost, fast response and immunity to electromagnetic interference. It is commonly integrated into medical devices for long-distance light transmission and collection due to its high flexibility, low propagation loss, compatibility and tolerance to electromagnetic interference. SMFBG is a device made of thin glass material that is used as a medium for transmitting information in the form of light signals sourced from lasers or LEDs from one location to another. It consists of 3 main components, namely core with a certain grating, blanket (cladding) and jacket (coating). The advantage of optical fiber is that the data when transmitted is converted into light so as to reduce the risk of data damage. Other advantages include very small size, minimal interference with electromagnetic waves, resistance to temperature changes, attenuation when the transmission process is small enough, and large enough bandwidth. The orientation of this literature review is to understand the concept of optical fiber, the concept of reflection and refraction, and how light propagates in optical fiber.