Claim Missing Document
Check
Articles

Found 3 Documents
Search

Drone Berbahan Komposit Serat Rami Dengan Karbon Aktif-Barium M-Heksaferit Sebagai Radar Absorbing Material Aritonang, Sovian; Hijrianisa, Alya; Pratita, Elda; Ningrum, Hanifa Setya; Pangestu, Bintang Brilliant
Rekayasa Material, Manufaktur dan Energi Vol 7, No 1: Januari 2024
Publisher : Fakultas Teknik UMSU

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30596/rmme.v7i1.17283

Abstract

Radar is a crucial tool in military applications for detecting enemy objects in its vicinity, but its presence can pose a risk of being detected by adversaries. Therefore, this research focuses on the development of Radar Absorbing Material (RAM) using activated carbon obtained from cassava peel and Barium M-Hexaferrite. The research results indicate that this combination can be used as a protective layer on military drones made of composite hemp fibers, enhancing the drone's ability to absorb radar waves, thus reducing the risk of detection by adversaries. This improves the effectiveness of military operations and contributes to environmental preservation through the use of eco-friendly materials. 
Safety induction for agricultural workers in particular areas of Gadog Village in handling hazardous agrochemical exposures Xaviera, Allodya Nadra; Hijrianisa, Alya; Lubis, Astrid Blandina Cynthia; Stiawan, Elva; Gunaryo, G.
Journal of Community Service and Empowerment Vol. 5 No. 2 (2024): August
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jcse.v5i2.30180

Abstract

An integrated program of community service and chemical teaching has been conducted to deliver proper information to handle chemical agents that are commonly used in agricultural activities. This initiative addresses the limitation of chemical understanding among local farmers and livestock breeders regarding the safety aspect of common agrochemicals, leading to either health risks or environmental problems. Knowledge regarding agrochemical handling and disposal was delivered through presentations, discussions, and hands-on practices. Accordingly, through this community service, we encouraged agricultural workers with a basic understanding of the chemical properties of hazardous agrochemicals and the safety induction in handling and disposing of those compounds. Based on the activities carried out, the results of the pre-test and post-test showed an increase of 62% in farmers' understanding of hazardous chemicals and proper handling of these chemicals. In addition to providing some beneficial scientific information to enhance agricultural workers’ safety in their working area, an activity related to education and training of agrochemicals could increase peoples’ awareness toward hazardous chemicals that would be still freely commercialized, for example, in terms of mitigating risks associated with chemical threats.
Recent Advances in Nickel Ferrite-Polymer Nanocomposites for Radar Absorbing Material Applications Panjaitan, Thesalonika Br; Hijrianisa, Alya; Apriliyanto, Yusuf Bramastya; Ananda, Dea Dwi; Basuki, Rahmat; Renta, Hotma
Sorption Studies Vol. 1 No. 2 (2025): Sorption Studies, December 2025
Publisher : Indonesian Scholar Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55749/ss.v1i2.125

Abstract

Nickel ferrite (NiFe₂O₄) and its polymer-based composites have emerged as promising candidates for radar absorbing materials (RAMs) due to their unique combination of magnetic and dielectric loss mechanisms. This review highlights recent advances in synthesis strategies, including sol–gel, hydrothermal, co-precipitation, and microwave-assisted methods, which enable precise control of particle size, morphology, and crystallographic defects. Such control supports flexible structural design of nickel ferrite spinel structures, allowing dopant incorporation to tailor magnetic anisotropy and saturation magnetization. These structural features directly affect electromagnetic performance. Magnetic loss is mainly governed by natural resonance and, to a lesser extent, eddy current effects, while dielectric loss arises from dipole polarization, interfacial polarization, and conduction loss. The synergistic balance of magnetic and dielectric losses makes nickel ferrite–polymer nanocomposites promising broadband radar absorbing materials. The discussion emphasizes the role of cation substitution, polymer matrices, and hybridization with carbon-based materials in enhancing microwave absorption bandwidth and impedance matching. Various synthesis approaches, including sol–gel, hydrothermal, and in-situ polymerization, are compared with respect to their influence on particle size, morphology, and absorption efficiency. Challenges such as limited bandwidth, thermal and mechanical stability, and scalability are highlighted, along with potential solutions through advanced nanostructuring, multifunctional design, and sustainable synthesis. Future research directions are also outlined to support the development of next-generation stealth and electromagnetic interference shielding technologies.