Santoso, Syifa Afnani
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimizing Coral Fish Detection: Faster R-CNN, SSD MobileNet, YOLOv5 Comparison Santoso, Syifa Afnani; Jaya, Indra; Priandana, Karlisa
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 18, No 2 (2024): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.95011

Abstract

This study underscores the critical role of accurate Chaetodontidae fish abundance observations, particularly in assessing coral reef health. By integrating deep learning algorithms (Faster R-CNN, SSD-MobileNet, and YOLOv5) into Autonomous Underwater Vehicles (AUVs), the research aims to expedite fish identification in aquatic environments. Evaluating the algorithms, YOLOv5 emerges with the highest accuracy, followed by Faster R-CNN and SSD-MobileNet. Despite this, SSD-MobileNet showcases superior computational speed with a mean average precision (mAP) of around 92.21% and a framerate of about 1.24 fps. Furthermore, employing the Coral USB Accelerator enhances computational speed on the Raspberry Pi 4, enabling real-time detection capabilities. This study incorporates centroid tracking, facilitating accurate counting by assigning unique IDs to identified objects per class. Ultimately, the real-time implementation of the system achieves 87.18% accuracy and 87.54% precision at 30 fps, empowering AUVs to conduct real-time fish detection and tracking, thereby significantly contributing to underwater research and conservation efforts.