IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
Vol 18, No 2 (2024): April

Optimizing Coral Fish Detection: Faster R-CNN, SSD MobileNet, YOLOv5 Comparison

Santoso, Syifa Afnani (Unknown)
Jaya, Indra (Unknown)
Priandana, Karlisa (Unknown)



Article Info

Publish Date
30 Apr 2024

Abstract

This study underscores the critical role of accurate Chaetodontidae fish abundance observations, particularly in assessing coral reef health. By integrating deep learning algorithms (Faster R-CNN, SSD-MobileNet, and YOLOv5) into Autonomous Underwater Vehicles (AUVs), the research aims to expedite fish identification in aquatic environments. Evaluating the algorithms, YOLOv5 emerges with the highest accuracy, followed by Faster R-CNN and SSD-MobileNet. Despite this, SSD-MobileNet showcases superior computational speed with a mean average precision (mAP) of around 92.21% and a framerate of about 1.24 fps. Furthermore, employing the Coral USB Accelerator enhances computational speed on the Raspberry Pi 4, enabling real-time detection capabilities. This study incorporates centroid tracking, facilitating accurate counting by assigning unique IDs to identified objects per class. Ultimately, the real-time implementation of the system achieves 87.18% accuracy and 87.54% precision at 30 fps, empowering AUVs to conduct real-time fish detection and tracking, thereby significantly contributing to underwater research and conservation efforts.

Copyrights © 2024






Journal Info

Abbrev

ijccs

Publisher

Subject

Computer Science & IT Control & Systems Engineering

Description

Indonesian Journal of Computing and Cybernetics Systems (IJCCS), a two times annually provides a forum for the full range of scholarly study . IJCCS focuses on advanced computational intelligence, including the synergetic integration of neural networks, fuzzy logic and eveolutionary computation, so ...