This study underscores the critical role of accurate Chaetodontidae fish abundance observations, particularly in assessing coral reef health. By integrating deep learning algorithms (Faster R-CNN, SSD-MobileNet, and YOLOv5) into Autonomous Underwater Vehicles (AUVs), the research aims to expedite fish identification in aquatic environments. Evaluating the algorithms, YOLOv5 emerges with the highest accuracy, followed by Faster R-CNN and SSD-MobileNet. Despite this, SSD-MobileNet showcases superior computational speed with a mean average precision (mAP) of around 92.21% and a framerate of about 1.24 fps. Furthermore, employing the Coral USB Accelerator enhances computational speed on the Raspberry Pi 4, enabling real-time detection capabilities. This study incorporates centroid tracking, facilitating accurate counting by assigning unique IDs to identified objects per class. Ultimately, the real-time implementation of the system achieves 87.18% accuracy and 87.54% precision at 30 fps, empowering AUVs to conduct real-time fish detection and tracking, thereby significantly contributing to underwater research and conservation efforts.
                        
                        
                        
                        
                            
                                Copyrights © 2024