Sihombing , Nissi Grace Dian
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparison Analysis of C4.5 Algorithm and KNN Algorithm for Predicting Data of Non-Active Students at Prima Indonesia University Banjarnahor, Jepri; Zai , Ferman; Sirait , Janiali; Nainggolan , Dicky Wijaya; Sihombing , Nissi Grace Dian
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12879

Abstract

Education is important nowadays because universities need to improve their students' skills so they can compete in the globalization era. Education can be obtained through both formal and informal channels, and knowledge is available everywhere, especially in today's world where information tools are rapidly evolving. Inactive students are students who do not participate in a course for a maximum of two consecutive semesters. Students who are not active have the opportunity to drop out of university studies. Students who drop out of college are usually motivated by economic factors, and the cessation of the lecture process can cause inactivity and administrative costs. Therefore, this research was conducted using the C4.5 algorithm method and the K-Nearest Neighbor (KNN) algorithm to compare and predict data on inactive students at Universitas Prima Indonesia. The research continued with the data collection and data preprocessing stages, after which the data mining process was carried out to get the final results of this research. The testing process follows the process of comparing the C4.5 algorithm and the K-Nearest Neighbor (KNN) algorithm with K-fold crossing. This evaluation step is compared by considering the comparison values of the confusion matrix (precision, precision, recall). The accuracy results obtained by each algorithm provide information about the effectiveness of using these techniques in processing the specified dataset. The accuracy of the Decision Tree C4.5 algorithm is 99.12% and the K-Nearest Neighbors algorithm is 99.14%. Based on research conducted using the K-Nearest Neighbors and C4.5 algorithms to predict inactive students, the KNN algorithm is more accurate than the C4.5 algorithm.