Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparison of Melted Corium Relocation during Severe Accident of High Temperature Reactor using Moving Particle Semi-Implicit Method Irfan, Muhamad; Humolungo, Ismail; Mustari, Asril Pramutadi Andi; Permana, Sidik
Computational And Experimental Research In Materials And Renewable Energy Vol 6 No 1 (2023): May
Publisher : Physics Department, Faculty of Mathematics and Natural Sciences, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/cerimre.v6i1.39363

Abstract

System failure in nuclear reactors can cause degradation of a reactor core, allowing melting and relocation of the corium to the lower plenum in the nuclear reactor system. In this study, a severe accident simulation was carried out using the Moving Particle Semi-Implicit (MPS) method. In this method, we model the relocation of molten corium on the reactor core (support plate) to the lower plenum for several conditions with variations: corium material, lower plenum conditions, temperature, viscosity, and density. Those treatments were carried out in order to be able to compare and analyze the characteristics of the corium melt by reviewing the velocity profiles. The formation of a corium pool and debris bed can result in significant temperature differences and high heat flux against the walls of the reactor vessel, causing a decrease in the integrity of the reactor vessel and reactor failure.Keywords: Corium, Uranium Dioxide (UO2), Zirconium Dioxide (ZrO2), Fluid Relocation, Moving Particle Semi-Implicit (MPS).
Performance Analysis of Radiation Detection Devices in Elevated Natural Radiation Zones: A Case Study of Mamuju Regency, West Sulawesi Indonesia Abdullah, Adi Rahmansyah Amir; Permana, Sidik; Srigutomo, Wahyu; Maulana, Alan; Seno, Haryo; Purnama, Dikdik Sidik; Tursinah, Rasito; Humolungo, Ismail; Zulfahmi, Zulfahmi
Journal of Engineering and Technological Sciences Vol. 57 No. 1 (2025): February
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2025.57.1.8

Abstract

Three radiation detection tools were employed to assess natural radiation levels in Mamuju Regency, West Sulawesi, Indonesia. These tools comprised the NaI(Tl) Scintillator, the Geiger Muller Counter (GMC), and the Electronic Personal Dosimeter (EPD). The NaI(Tl) Scintillator and GMC measured ambient dose equivalent (H*(10)), while the EPD exclusively gauged personal dose equivalent (Hp(10)). A total of 75 measuring points were designated for assessment. Results from H*(10) measurements indicated that the GMC recorded an average H*(10) 41% higher than that of the NaI(Tl) Scintillator, with specific rates of 0.769 µSv/h and 0.457 µSv/h, respectively. Both instruments exhibited proficiency in detecting elevated levels of radiation. Discrepancies in the outcomes were attributed to differences in detector type and efficiency. The GMC, equipped with an energy-compensated detector, demonstrated enhanced efficiency compared to the NaI(Tl) Scintillator, particularly when subjected to high energy flux radiation. Anomalies emerged in the Hp(10) measurements, which surpassed the H*(10) measurements. This difference is due to the EPD's use of a conventional GM detector, which is capable of detecting gamma, beta, and X-ray radiation