Claim Missing Document
Check
Articles

Found 1 Documents
Search

Sistem Deteksi Dini Autism Spectrum Disorder (ASD) Berbasis Face Recognition Menggunakan Metode Transfer Learning Resnet50 Purboningrum, Fadhila; Utaminingrum, Fitri; Al huda, Fais
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 8 No 5 (2024): Mei 2024
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Autism Spectrum Disorder (ASD) merupakan suatu kondisi neurologis yang memengaruhi perkembangan anak. ASD memiliki prevalensi global 1 dari 100 anak. Sifat dan gejala ASD yang beragam, seperti kesulitan berkomunikasi, berinteraksi sosial, dan perilaku repetitif menjadi tantangan tersendiri dalam proses diagnosis yang akurat. Karakteristik wajah, diidentifikasi sebagai kunci potensial, menjadi dasar untuk pengembangan sistem deteksi dini menggunakan face recognition dan deep learning. Penelitian ini mengusulkan sistem deteksi dini ASD dengan memanfaatkan Android dan metode transfer learning arsitektur model ResNet50. Sistem ini diimplementasikan dalam bentuk aplikasi Android dengan arsitektur model ResNet50 yang telah dilatih pada dataset ImageNet. Penggunaan teknologi Android dipilih untuk aksesibilitas yang lebih luas, dengan 67% penduduk Indonesia sebagai pengguna smartphone. Hasil penelitian menunjukkan bahwa nilai epoch optimal untuk model adalah 51 dengan nilai accuracy sebesar 91%, nilai precision 92%, serta nilai recall dan f1-score masing-masing sebesar 90%. Selain itu, berdasarkan pengujian dan analisis terhadap hasil pengujian didapatkan akurasi luaran aplikasi sebesar 100% pada kelas autistic dan 60% pada kelas non-autistic dengan rata-rata waktu komputasi 2,827 detik. Saran melibatkan penambahan variasi dataset, validasi data dengan pakar, dan optimasi sisi client Android untuk meningkatkan kecepatan tampilan hasil. Penelitian ini memberikan landasan untuk mendemonstrasikan potensi face recognition dan model deep learning dalam membantu proses diagnosis Autism Spectrum Disorder (ASD) dengan akurasi tinggi, serta untuk mendukung intervensi dini dan meningkatkan kesadaran terhadap ASD.