Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Peramalan Curah Hujan Menggunakan Metode Extreme Learning Machine (Studi Kasus: Stasiun Klimatologi Jawa Timur) Sukamto, Anjas Pramono; Soebroto, Arief Andy
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 8 No 5 (2024): Mei 2024
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini fokus pada analisis peramalan curah hujan di Indonesia, sebuah negara tropis yang terdapat curah hujan tinggi sehingga menyebabkan banjir dan tanah longsor. Stasiun Klimatologi Jawa Timur, terletak di Kabupaten Malang, merupakan pusat informasi cuaca dan sering terkena dampak banjir. Studi ini mengidentifikasi pola data historis secara sistematis untuk peramalan yang akurat. Metode peramalan yang digunakan adalah Jaringan Saraf Tiruan, khususnya Extreme Learning Machine (ELM). ELM dianggap efektif dengan tingkat kesalahan rendah dan kecepatan pelatihan yang tinggi. Penelitian ini membandingkan kinerja ELM dibandingkan metode tradisional seperti KNN dan SVM, menunjukkan superioritas ELM dalam kecepatan dan kinerja komputasi. Sebuah studi kasus menggunakan judul "Analisis Peramalan Curah Hujan Menggunakan Metode Extreme Learning Machine (Studi Kasus: Stasiun Klimatologi Jawa Timur)" menyoroti penerapan ELM dalam konteks ini. Temuan penelitian ini dapat mendukung upaya pencegahan banjir melalui peramalan yang lebih akurat. Kinerja peramalan curah hujan dengan metode ELM memperoleh nilai Mean Squared Error (MSE) 0,021 rasio parameter data pelatihan dan data pengujian sebesar 50% - 50% dan jumlah hidden neuron sebanyak 10 neuron.