Articles
Sistem Pendukung Keputusan Seleksi Beasiswa Ppa Dan Bbm Menggunakan Metode Fuzzy Ahp
Rekyan Regasari, Fauziah Mayasari Iskandar, Arief Andy Soebroto,
SMATIKA Vol 3, No 1 (2013)
Publisher : SMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Each institute of education like university offered scholarships for students who have a good achievement and lack of financial. To assured that Academic Achievement Scholarship (PPA) and StudentLearning Assistance (BBM) delivered to the right person, we need a comprehensive system to make decisions. The selection process of PPA and BBM scholarships is a problem which recently discussed by students because there  is  a  probability that  the  distribution is  not  well  targeted, the  time  is  overdue,  and  the  amount is inappropriate. We can use Fuzzy AHP method for this Decision Support System (DSS). AHP model can represent a  problem into a hierarchy with levels: objectives, criteria, and alternatives and the fuzzy logic is used to minimize uncertainty value in AHP with crisp value. The analysis of software requirement system consists of actorâs identification and requirement list.Implementation of web-based system use HTML and PHP programming language that integrated with MySQL databases. The testing used are validation (Black Box) testing and accuracy testing. Black Box testing result is 100% which indicates that the functionality of the system fulfill the system requirements list. Accuracy testing result is 80% for PPA and 33.33% for BBM which indicate the DSS is running well with Fuzzy AHP method.
Pengembangan Sistem Pakar Untuk Memprediksi Kelas Kemampuan Lahan Pertanian
Issa Arwani, Sativandi Putra, Arief Andy Soebroto,
SMATIKA Vol 3, No 1 (2013)
Publisher : SMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Sistem Pakar Kelas Kemampuan Lahan Pertanian adalah perangkat lunak yang dapat digunakan untuk membantu dalam memprediksi delapan macam kelas kemampuan lahan pertanian melalui berbagai macam faktor pembatas lahan  dan  kriteria  lahan  serta  memberikan keterangan tentang  perlunya  mengambil tindakan  atau  rekomendasi  lahan  yang  lebih  baik.  Sistem  pakar  dibangun berdasarkan  basis pengetahuan dan mesin inferensi.  Basis pengetahuan direpresentasikan oleh  dua  elemen  dasar  yaitu  fakta  dan  aturan.  Basis pengetahuan menggunakan data hasil pertimbangan pakar.    Mesin inferensi pada sistem pakar yang dibuat menggunakan   metode   penalaran  Forward   Chaining.   Perangkat   lunak   yang   dibuat dikembangkan  dengan bahasa  pemrograman PHP berbasis  Framework  Codeigniter  dan  mengadopsi pola arsitektur Model-View- Controller.Sistem Pakar Kelas Kemampuan Lahan Pertanian dikembangkan dengan metode Component-Based Software Engineering. Fungsi-fungsi sistem ini diuji menggunakan white-box testing, black-box testing, dan pengujian akurasi. Prediksi kelas kemampuan lahan pertanian dibandingkan dengan prediksi kelas kemampuan  lahan  pertanian  oleh  seorang  pakar.  Hasil  perbandingan  ini merepresentasikan keakuratan prediksi sistem pakar. Keakuratan prediksi kelas kemampuan lahan pertanian mencapai 100%.
Akreditasi Program Studi Sarjana Menggunakan Metode Analytic Hierarchy Process (Ahp)
Rekyan Regasari, Niken Hendrakusma Wardani, Arief Andy Soebroto,
SMATIKA Vol 3, No 1 (2013)
Publisher : SMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Setiap program studi sarjana dari perguruan tinggi negeri maupun swasta yang ada di Indonesia memerlukan penilaian akreditasi sebagai kendali mutu dan akuntabilitas publik institusi. Pencapaian predikat terakreditasi A  dari  Badan  Akreditasi  Nasional  Perguruan  Tinggi  (BAN-PT)  bukanlah  hal  yang  mudah dilakukan dalam waktu singkat. Keterbatasan sumber daya manusia, dana, waktu dan penilaian BAN-PT dijadikan sebagai pertimbangan ketua program studi (kaprodi) untuk perbaikan akreditasi. Sistem Pendukung Keputusan  (SPK)  dibuat  untuk  membantu  kaprodi  dalam  menyusun  prioritas perbaikan  tujuh  standar akreditasi berdasarkan pertimbangan kondisi program studi. Metode Analytic Hierarchy Process (AHP) merupakan salah satu metode dalam Multiple Criteria Decision Making (MCDM) yang mampu menguraikan sebuah masalah ke bentuk hierarki dengan level: tujuan, kriteria, dan alternatif [1].Perangkat lunak yang dikembangkan menggunakan bahasa pemrograman PHP dan HTML. Hasil pengujian fungsionalitas terhadap 12 test case dengan metode black-box testing menunjukkan bahwa sistem ini100% valid untuk memenuhi daftar kebutuhan sistem. Pengujian proses perankingan dan User Acceptance Test (UAT) dilakukan terhadap 7 objek uji. Hasilnya menunjukkan bahwa sistem dapat diterima dan  bekerja dengan baik  untuk  menentukan  prioritas  perbaikan  standar  akreditasi  secara  ideal  (menggunakan perhitungan matematis metode AHP) berdasarkan bobot kriteria dan kondisi program studi.
Prediksi Tinggi Muka Air (TMA) Untuk Deteksi Dini Bencana Banjir Menggunakan SVR-TVIWPSO
Soebroto, Arief Andy;
Cholissodin, Imam;
Wihandika, Randy Cahya;
Frestantiya, Maria Tenika;
Arief, Ziya El
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2, No 2 (2015)
Publisher : Fakultas Ilmu Komputer
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1302.981 KB)
Abstrak Banjir merupakan salah satu jenis bencana alam yang tidak dapat diprediksi kedatangannya, salah satu penyebabnya adalah adanya hujan yang terus â menerus(dari peristiwa alam). Faktor penyebab banjir dari segi meteorologi yaitu curah hujan yang tinggi dan air laut yang sedang pasang sehingga mengakibatkan tinggi permukaan air meningkat. Analisis terhadap data curah hujan serta tinggi permukaan air setiap periodenya dirasa masih belum dapat menyelesaikan permasalahan yang ada. Oleh karena itu, pada penelitian ini diusulkan teknik integrasi metode Time Variant Inertia Weight Particle Swarm Optimization(TVIWPSO) dan Support Vector Regression(SVR). Implementasi memadukan metode Regresi yaitu SVR untuk forecasting TMA, sedangkan TVIWPSO digunakan untuk mengoptimalisasi parameter â parameter yang digunakan di dalam SVR untuk memperoleh kinerja yang maksimal dan hasil yang akurat. Harapannya sistem ini akan dapat membantu mengatasi permasalahan untuk pendeteksian dini bencana banjir karena faktor cuaca yang tidak menentu. Hasil pengujian yang didapat dari 10 data bulanan yang berbeda menunjukkan bahwa didapatkan nilai error terkecil sebesar 0.00755 dengan menggunakan Mean Absolute Error untuk data Juni 2007 dengan menggunakan integrasi metode SVR-TVIWPSO. Kata Kunci : Support Vector Regression, Tinggi Muka Air, Time Variant Inertia Weight Particle Swarm Optimization. Abstract Flood is one type of natural disaster that can not be predicted its arrival, one reason is the rain that constantly occurs (from natural events). Factors that cause flooding in terms of meteorology are high rainfall and sea water was high, resulting in high water level increases. Analysis of rainfall data and water level in each period it is still not able to solve existing problems. Therefore, in this study the method proposed integration techniques Time Variant Inertia Weight Particle Swarm Optimization (TVIWPSO) and Support Vector Regression (SVR). Implementation combines regression method for forecasting TMA is SVR, while TVIWPSO used to optimize parameters that used in the SVR to obtain maximum performance and accurate results. Hope this system will be able to help solve the problems for the early detection of floods due to erratic weather. The result of forecasting experiment in water level forecasting from 10 monthly different data show that the smallest error rate is amount to 0.00755 using Mean Absolute Error for June 2007 with the integration method SVR-TVIWPSO. Keywords: Support Vector Regression, water level, Time Variant Inertia Weight Particle Swarm Optimization.
PEMODELAN SISTEM PENDUKUNG KEPUTUSAN PROMOSI JABATAN PADA PERUSAHAAN ASURANSI DENGAN MENGGUNAKANMETODE FUZZY MAMDANI
soebroto, arief andy
MATICS Vol 6, No 2 (2014): MATICS
Publisher : Department of Informatics Engineering
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (451.604 KB)
|
DOI: 10.18860/mat.v6i2.2600
Promotion of professionalism is the recognition given to employees on company performance. Promotion can increase employee job satisfaction and effectiveness. Promotion opportunities can make employees feel valued, cared for, needed and recognized his ability by the company. One of the positive impact of the promotion is to produce a high loyalty to the company. However, in deciding the promotion of optimum accuracy is needed in the selection of employees eligible to get it. Factors that influence the decision of the promotion criteria should be considered as working time, discipline, teamwork, performance and appearance. The proposed research model is a decision support system in the promotion of insurance companies using fuzzy method mamdani. The method used for calculating the value of each criterion in determining preferences. The results of these calculations a reference manager in determining which employees are given proper promotion. Keywords : Decision support systems, Promotion of professionalism, Mamdani Fuzzy.
SISTEM PAKAR TES KEPRIBADIAN PAPI KOSTICK UNTUK SELEKSI DAN PENEMPATAN TENAGA KERJA
Cemani, Dwi Puri;
Soebroto, Arief Andy;
Wicaksono, Satrio Agung
MATICS MATICS (Vol 5, No 3
Publisher : Department of Informatics Engineering
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (620.628 KB)
|
DOI: 10.18860/mat.v0i0.2428
Company commonly in doing the  selection or the placement of the employees by using curriculum vitae (CV) or application form to see the applicant’s ability. The weakness, although the CV writer who is capable who is able until the level of  interview is not a guarantee that he is the right person who is needed by the company. The company can see the adjustment between the aplicant with the working through personality test. Kostick PAPI method is implemented in the expert system to evaluate behavioral and individuals working way in the relation to the working situation. The expert system is implemented in a web-based. The testing used are validation testing (Black Box testing) and accuracy testing the of expert systems. The result of Black Box testing  is 100% showing of  functionality system works well as requirements list. The result of accuracy testing is 96,49% showing of an expert system functions well as Kostick PAPI method. Â
SISTEM RESERVASI TIKET BUS DI TERMINAL ARJOSARI MALANG
Wirawan, Surya;
Soebroto, Arief Andy;
Aknuranda, Ismiarta
MATICS MATICS (Vol 5, No 3
Publisher : Department of Informatics Engineering
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (610.552 KB)
|
DOI: 10.18860/mat.v0i0.2429
Bus Ticket Reservation System is an application that can be used to help booking bus tickets and the buyer will get a report via SMS Gateway. The reservation system is made by conducting field studies in Arjosari Bus Station Malang. This system uses SMS Gateway to send the report to the buyer after booking bus tickets online. SMS Gateway on this application serves as a liaison which delays sms between External Short Message entitiy (ESME) and Short Message Service Center (SMSC) and so does in reserve.The reservation system made is developed with the PHP programming language and has a prototype system pattern. System functions were tested using the validation testing, performance testing, and usability testing. The results percentage of responses usability testing is 67.7%. This shows that Ticket Reservation System at Arjosari Bus Station can be used well enough. Â
Integration Method of Local-global SVR and Parallel Time Variant PSO in Water Level Forecasting for Flood Early Warning System
Arief Andy Soebroto;
Imam Cholissodin;
Maria Tenika Frestantiya;
Ziya El Arief
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 3: June 2018
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/telkomnika.v16i3.6772
Flood is one type of natural disaster that can’t be predicted, one of the main causes of flooding is the continuous rain (natural events). In terms of meteorology, the cause of flood is come from high rainfall and the high tide of the sea, resulting in increased the water level. Rainfall and water level analysis in each period, still not able to solve the existing problems. Therefore in this study, the proposed integration method of Parallel Time Variant PSO (PTVPSO) and Local-Global Support Vector Regression (SVR) is used to forecast water level. Implementation in this study combine SVR as regression method for forecast the water level, Local-Global concept take the role for the minimization for the computing time, while PTVPSO used in the SVR to obtain maximum performance and higher accurate result by optimize the parameters of SVR. Hopefully this system will be able to solve the existing problems for flood early warning system due to erratic weather.
PENGEMBANGAN SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN BIBIT UNGGUL SAPI BALI MENGGUNAKAN METODE K-NEAREST NEIGHBOR
Indra Ekaristio P;
Arief Andy Soebroto;
Ahmad Afif Supianto
Journal of Environmental Engineering and Sustainable Technology Vol 2, No 1 (2015)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Brawijaya
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (865.329 KB)
|
DOI: 10.21776/ub.jeest.2015.002.01.7
Bali cattle is an Indonesian native cattle that have a characteristic of the color of his skin. Bali cattle skin color can indicate the quality of the Bali cattle. The classification of the quality of Bali cattle directly is difficult because the human eye has a limited ability to see colors. A decision support system that is able to classify the quality of Bali cattle is based on a digital image of the skin color can help to overcome these limitations. The system will classify Bali cattle into three classes, namely Good (Seeds Superior), Average and Poor. System applying the K-Nearest Neighbor algorithm for the classification process is based on the average features and standard deviation of the red, green, and blue (RGB). This research tested a method to obtain the best value of K, the best image size, and the amount of training data best that will be used. Male Bali cattle using a value of K = 3, image size = 128×128 pixel, and the amount of training data = 45. While the female Bali cattle using a value of K = 6, image size = 64×64 pixel, and the amount of training data = 30. The results of testing the accuracy of the system for male Bali cattle is 100%, while the results of testing the accuracy of the system for female Bali cattle is 66.67%.
PEMILIHAN ALTERNATIF SIMPLISIA MENGGUNAKAN METODE WEIGHTED PRODUCT (WP) DAN METODE SIMPLE ADDITIVE WEIGHTING (SAW)
Febrianita Indah Perwitasari;
Arief Andy Soebroto;
Nurul Hidayat
Journal of Environmental Engineering and Sustainable Technology Vol 2, No 1 (2015)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Brawijaya
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (114.94 KB)
|
DOI: 10.21776/ub.jeest.2015.002.01.4
Nowadays, people tend to consume organic stuff for meal and medication because of its condition of being secure and inexpensive price. Simplisia is organic material which is not yet processed in order to cure the illness. The part that is used from the whole part to the each piece of simplisia, such as leaves, flowers, fruits, and so on. Simplisia has been being used for solution to the illness, especially at Poli Obat Tradisional RSUD Dr. Soetomo. There are many variants of illness that can be cured by simplisia and there are many variants of simplisia than can be used to cure the illness, which are all usually made the people confused which one is the best variant to cure. Regarding of choosing the alternatives, there is more than one method in Decision Support System that can be used to solve the problem. In this research, there will be two methods that aim at finding the best alternative of simplisia, which are Weighted Product (WP) and Simple Additive Weighting (SAW). Comparison research is used to decide which method as the best method on giving simplisia for the illness. The test scenario is comparing between the result which is given by the system and by the doctor. The accuracy of the result for WP method is 89% and SAW method is 89%.