Claim Missing Document
Check
Articles

Found 2 Documents
Search

An efficient adaptive reconfigurable routing protocol for optimized data packet distribution in network on chips Goravi Sukumar, Pavithra; Krishnaiah, Modugu; Velluri, Rekha; Satish, Pooja; Nagaraju, Sharmila; Gowda Puttaswamy, Nandini; Srikantaswamy, Mallikarjunaswamy
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp305-314

Abstract

The deadlock-free and live lock-free routing at the same time is minimized in the network on chip (NoC) using the proposed adoptive reconfigurable routing protocol (ARRP). Congestion condition emergencies are avoided using the proposed algorithm. The input packet distribution process is improved among all its shortest paths of output points. The performance analysis has been initiated by considering different configuration (N*N) mesh networks, by sending various ranges of data packets to the network on chip. The average and maximum power dissipation of XY, odd-even, Dy-XY algorithm, and proposed algorithm are determined. In this paper, an analysis of gate utilization during data packet transfer in various mesh configurations is carried out. The number of cycles required for each message injection in different mesh configurations is analyzed. The proposed routing algorithm is implemented and compared with conventional algorithms. The simulation has been carried out using reconfigurable two-dimensional mesh for the NoC. The proposed algorithm has been implemented considering array size, the routing operating frequency, link width length, value of probability, and traffic types. The proposed ARRP algorithm reduces the average latency, avoids routing congestion, and is more feasible for NoC compared to conventional methods.
An efficient load-balancing in machine learning-based DC-DC conversion using renewable energy resources Shankara, Kavitha Hosakote; Hosakote Shankara, Kavitha; Srikantaswamy, Mallikarjunaswamy; Nagaraju, Sharmila
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i1.pp307-316

Abstract

This paper introduces the machine learning-based DC-DC conversion algorithm (ML-DC2A), a pioneering machine learning (ML) approach designed to enhance load-balancing in DC-DC conversion systems powered by renewable energy sources. Traditional control strategies, such as pulse-width modulation (PWM), maximum power point tracking (MPPT), and basic voltage and current controls, are foundational yet often fall short in adapting to the rapid fluctuation’s characteristic of renewable energy supply. The ML-DC2A optimizes crucial performance indicators including conversion efficiency, reliability, adaptability to energy supply variability, and response time to changing loads. By leveraging predictive analytics and adaptive algorithms, it dynamically manages the conversion process, offering superior performance over traditional techniques. A notable drawback of conventional methods is their inability to anticipate and adjust to real-time changes in energy availability and demand, leading to inefficiencies and potential system instability. The proposed ML-DC2A addresses these challenges by incorporating a sophisticated ML framework that predicts future energy scenarios and adaptively adjusts system parameters to maintain optimal performance. Initial results highlight the transformative potential of integrating ML into renewable energy conversion systems, promising significantly enhanced efficiency and system resilience, thus marking a significant step forward in sustainable energy management.