Claim Missing Document
Check
Articles

Found 2 Documents
Search

Graph embedding approach to analyze sentiments on cryptocurrency Moudhich, Ihab; Fennan, Abdelhadi
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp690-697

Abstract

This paper presents a comprehensive exploration of graph embedding techniques for sentiment analysis. The objective of this study is to enhance the accuracy of sentiment analysis models by leveraging the rich contextual relationships between words in text data. We investigate the application of graph embedding in the context of sentiment analysis, focusing on it is effectiveness in capturing the semantic and syntactic information of text. By representing text as a graph and employing graph embedding techniques, we aim to extract meaningful insights and improve the performance of sentiment analysis models. To achieve our goal, we conduct a thorough comparison of graph embedding with traditional word embedding and simple embedding layers. Our experiments demonstrate that the graph embedding model outperforms these conventional models in terms of accuracy, highlighting it is potential for sentiment analysis tasks. Furthermore, we address two limitations of graph embedding techniques: handling out-of-vocabulary words and incorporating sentiment shift over time. The findings of this study emphasize the significance of graph embedding techniques in sentiment analysis, offering valuable insights into sentiment analysis within various domains. The results suggest that graph embedding can capture intricate relationships between words, enabling a more nuanced understanding of the sentiment expressed in text data.
Evaluating sentiment analysis and word embedding techniques on Brexit Moudhich, Ihab; Fennan, Abdelhadi
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i1.pp695-702

Abstract

In this study, we investigate the effectiveness of pre-trained word embeddings for sentiment analysis on a real-world topic, namely Brexit. We compare the performance of several popular word embedding models such global vectors for word representation (GloVe), FastText, word to vec (word2vec), and embeddings from language models (ELMo) on a dataset of tweets related to Brexit and evaluate their ability to classify the sentiment of the tweets as positive, negative, or neutral. We find that pre-trained word embeddings provide useful features for sentiment analysis and can significantly improve the performance of machine learning models. We also discuss the challenges and limitations of applying these models to complex, real-world texts such as those related to Brexit.