Abdul Aziz, Mohd Azri
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Student performance classification: a comparison of feature selection methods based on online learning activities Alias, Muhamad Aqif Hadi; Abdul Aziz, Mohd Azri; Hambali, Najidah; Taib, Mohd Nasir
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp4675-4685

Abstract

The classification of student performance involves categorizing students' performance using input data such as demographic information and examination results. However, our study introduces a novel approach by emphasizing students' online learning activities as a rich data source. To avoid misinterpretation during the classification, we therefore presented a study comparing several feature selection (FS) methods combined with artificial neural network (ANN), for classifying students’ performance based on their online learning activities. At first, we focused on tackling the issue of missing values by implementing data cleaning using variance threshold. Feature selection techniques were implemented which encompass both filter-based (information gain, chi-square, Pearson correlation) and wrapper-based, sequential selection (forward and backward) techniques. In the classification stage, multi-layer perceptron (MLP) was used with the default hyperparameters and 5-fold cross-validation along with synthetic minority oversampling technique (SMOTE) were also applied to each method. We evaluated each feature selection method's performance using key metrics: accuracy, precision, recall, and F1-score. The outcomes highlighted information gain and sequential selection (forward and backward) as the top-performing methods, all achieving 100% accuracy. This research underscores the potential of leveraging online learning activities for robust student performance classification within the specified constraints.
A review on features and methods of potential fishing zone Ya’acob, Norsuzila; Nik Dzulkefli, Nik Nur Shaadah; Abdul Aziz, Mohd Azri; Yusof, Azita Laily; Umar, Roslan
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2508-2521

Abstract

This review focuses on the importance of identifying potential fishing zones in seawater for sustainable fishing practices. It explores features like sea surface temperature (SST) and sea surface height (SSH), along with classification methods such as classifiers. The features like SST, SSH, and different classifiers used to classify the data, have been figured out in this review study. This study underscores the importance of examining potential fishing zones using advanced analytical techniques. It thoroughly explores the methodologies employed by researchers, covering both past and current approaches. The examination centers on data characteristics and the application of classification algorithms for classification of potential fishing zones. Furthermore, the prediction of potential fishing zones relies significantly on the effectiveness of classification algorithms. Previous research has assessed the performance of models like support vector machines, naïve Bayes, and artificial neural networks (ANN). In the previous result, the results of support vector machine (SVM) were 97.6% more accurate than naive Bayes's 94.2% to classify test data for fisheries classification. By considering the recent works in this area, several recommendations for future works are presented to further improve the performance of the potential fishing zone models, which is important to the fisheries community.
Feature selection techniques and classification algorithms for student performance classification: a review Alias, Muhamad Aqif Hadi; Hambali, Najidah; Abdul Aziz, Mohd Azri; Taib, Mohd Nasir; Jailani, Rozita
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3230-3243

Abstract

The process of categorizing students’ performance based on input data, encompassing demographic information and final exam results, is recognized as student performance classification. Educational data mining has gained traction in assessing students’ performance. However, this study entails the need to analyze the diverse attributes of students’ information within an educational institution by using data mining techniques. This study thoroughly examines both previous and current methodologies presented by researchers, addressing two main aspects: data preprocessing and classification algorithms applied in student performance classification. Data preprocessing specifically delves into the exploration of feature selection techniques, encompassing three types of feature selection and search methods. These techniques aim to identify the most significant features, eliminate unnecessary ones, and reduce data dimensionality. In addition, classification algorithms play a crucial role in categorizing or predicting student performance. Models such as k-nearest neighbors (KNN), decision tree (DT), artificial neural networks (ANN), and linear models (LR) were scrutinized based on their performance in prior research. Ultimately, this study highlights the potential for further exploration of feature selection techniques like information gain, Chi-square, and sequential selection, particularly when applied to new datasets such as students’ online learning activities, utilizing a variety of classification algorithms.