Boutaghlaline, Anas
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

An on-chip soft-start pseudo-current hysteresis-controlled buck converter for automotive applications Boutaghlaline, Anas; El Khadiri, Karim; Tahiri, Ahmed
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1459-1472

Abstract

This paper introduces a novel direct current to direct current (DC-DC) buck converter that uses a pseudo-current hysteresis controller and an on-chip soft start circuit for improved transient performance in automotive applications. The proposed converter, implemented with Taiwan semiconductor manufacturing company (TSMC) 0.18 µm complementary metal oxide semiconductor (CMOS) one-poly-six-metal (1P6M) technology, includes a rail-to-rail current detection circuit and an on-chip soft start circuit to handle transient responses and improve efficiency. Transient response analysis shows fast settling times of 28 µs for both load current changes from 100 mA to 1 A and reversals with consistent transient voltages of approximately 190 mV and peak power efficiency of 99.32% at 5 V output voltage and 100 mA load current. Additionally, the converter maintains a constant output voltage of approximately 5 V across the entire load current range with an average accuracy of 90.41%. A comparative analysis with previous work shows superior performance in terms of figure of merit (FOM). Overall, the proposed pseudo-current hysteresis controlled buck converter exhibits remarkable transient response, load regulation and power efficiency, positioning it as a promising solution for demanding applications, particularly in automotive systems where precise voltage regulation is crucial.
An improved transient performance boost converter using pseudo-current hysteresis control Boutaghlaline, Anas; El Khadiri, Karim; Tahiri, Ahmed
Bulletin of Electrical Engineering and Informatics Vol 12, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i6.5835

Abstract

This paper introduces an enhanced low transient voltage and fast transient response boost converter. It uses a hysteresis-controlled circuit fed by a voltage signal from a rail-to-rail current sensor, resulting in improved efficiency, and transient response. The converter is designed using Taiwan semiconductor manufacturing company (TSMC) 0.18 µm CMOS 1P6M technology, delivers an output voltage of 1.8 V while operating with an input voltage range of 0.5 V to 1 V and supports an output load current range of 10 to 100 mA. The key contributions of this paper are: i) introducing a new boost converter architecture employing pseudo-current hysteresis-controlled (PCHC) techniques, ii) incorporating voltage and current loops into the proposed architecture, and iii) demonstrating superior transient performance. Experimental measurements reveal a peak power efficiency of 98.6% at 10 mA and transient times of 15.4 µs and 11.8 µs for a step load change from 10 to 100 mA and back to 10 mA, respectively, with transient voltages of 51 mV. The presented boost converter outperforms in terms of performance, compared to previous works using the figure of merit (FOM) formula.