Claim Missing Document
Check
Articles

Found 2 Documents
Search

Thai culture image classification with transfer learning Rattaphun, Munlika; Songsri-in, Kritaphat
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6259-6267

Abstract

Classifying images of Thai culture is important for a variety of applications, such as tourism, education, and cultural preservation. However, building a Machine learning model from scratch to classify Thai cultural images can be challenging due to the limited availability of annotated data. In this study, we investigate the use of transfer learning for the task of image classification on a dataset of Thai cultural images. We utilize three popular convolutional neural network models, namely MobileNet, EfficientNet, and residual network (ResNet) as baseline pre-trained models. Their performances were evaluated when they were trained from random initialization, used as a feature extractor, and fully fine-tuned. The results showed that all three models performed better in terms of accuracy and training time when they were used as a feature extractor, with EfficientNet achieving the highest accuracy of 95.87% while maintaining the training time of 24 ms/iteration. To better understand the reasoning behind the predictions made by the models, we deployed the gradient-weighted class activation mapping (Grad-CAM) visualization technique to generate heatmaps that the models attend to when making predictions. Both our quantitative and qualitative experiments demonstrated that transfer learning is an effective approach to image classification on Thai cultural images.
DualFaceNet: augmentation consistency for optimal facial landmark detection and face mask classification Songsri-in, Kritaphat; Rattaphun, Munlika; Kaewchada, Sopee; Ruang-on, Somporn
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i3.pp3228-3239

Abstract

In an era where face masks are commonplace, facial recognition faces new challenges and opportunities. This study introduces DualFaceNet (DFN), a cutting-edge neural network that efficiently combines facial landmark detection with mask classification. Benefiting from multi-task learning (MTL) and enhanced with a unique consistency loss, DFN outperforms traditional single-task models. Tests using the reputable 300W dataset and a face mask dataset showcase DFN’s strengths: a significant reduction in landmark error to 5.42 and an increase in mask classification accuracy to 92.59%. These results highlight the potential of integrating MTL and custom loss functions in facial recognition. As face masks continue to be globally essential, DFN’s integrated approach offers a fresh perspective in facial recognition studies. Furthermore, DFN paves the way for adaptive facial recognition systems, emphasizing the adaptability needed in our current era.