Doumcharieva, Zhanagul
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Forecasting stock market prices using deep learning methods Ismailova, Aisulu; Beldeubayeva, Zhanar; Kadirkulov, Kuanysh; Doumcharieva, Zhanagul; Konyrkhanova, Assem; Ussipbekova, Dinara; Aripbayeva, Ainura; Yesmukhanova, Dariga
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5601-5611

Abstract

The article focuses on enhancing stock market price prediction through artificial neural networks and machine learning. It underscores the significance of improving forecast accuracy by incorporating historical stock prices, macroeconomic indicators, news events, and technical indicators. Exploring deep learning principles, it delves into convolutional neural networks (CNN), recurrent neural networks (RNN), including long short-term memory (LSTM), and gated recurrent unit (GRU) modifications. This financial time series processing study covers data preprocessing, creating training/test sets, and selecting evaluation metrics. Results suggest promising applications for the developed forecasting models in stock markets, stressing the importance of considering various factors for precise forecasts in dynamic financial environments. Historical reserve data serves as the model foundation. Integration of macroeconomic, news, and technical indicators offers a holistic approach, aiding trend and anomaly identification for enhanced forecasts. The article recommends suitable deep learning architectures, highlighting LSTM and GRU's effectiveness in adapting to intricate data dependencies. Experimental outcomes showcase these architectures' benefits in predicting stock market prices, offering valuable insights for finance and asset management professionals in financial analysis and machine learning realms.
The extraction of a brief summary from scientific documents using machine learning methods Murzabekova, Gulden; Mukhamedrakhimova, Galiya; Taszhurekova, Zhazira; Yerbayev, Yerbol; Doumcharieva, Zhanagul; Makhatova, Valentina; Tolganbaeva, Moldir; Serikbayeva, Sandugash
Bulletin of Electrical Engineering and Informatics Vol 14, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i6.10660

Abstract

This study proposes a machine learning-based approach for automatic summarization of scientific documents using a fine-tuned DistilBART model a lightweight and efficient version of the bidirectional and auto-regressive transformers (BART) architecture. The model was trained on a large corpus of 12,540 scientific articles (2015–2023) collected from the arXiv repository, enabling it to effectively capture domain-specific terminology and structural patterns. The proposed pipeline integrates advanced text preprocessing techniques, including tokenization, stopword removal, and stemming, to enhance the quality of semantic representation. Experimental evaluation demonstrates that the fine-tuned DistilBART achieves high summarization performance, with ROUGE-2=0.472 and ROUGE-L=0.602, outperforming baseline transformer-based models. Unlike conventional approaches, the method shows strong applicability beyond academic research, including automated indexing of technical documentation, metadata extraction in digital libraries, and real-time text processing in embedded natural language processing (NLP) systems. The results highlight the potential of transformer-based summarization to accelerate scientific knowledge discovery and improve the efficiency of information retrieval across various domains.