Serikbayeva, Sandugash
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Approach to automating the construction and completion of ontologies in a scientific subject field Sadirmekova, Zhanna; Murzakhmetov, Aslanbek; Abduvalova, Ainur; Altynbekova, Zhanar; Makhatova, Valentina; Akhmetzhanova, Shynar; Tasbolatuly, Nurbolat; Serikbayeva, Sandugash
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3064-3072

Abstract

Domain ontologies facilitate the organization, sharing, and reuse of subject areas. Building a software ontology is labor-intensive and time-consuming. In the process of obtaining a software ontology, it is required to analyze a huge number of scientific publications relevant to the software being modeled. The process of ontology replenishing with information from a huge number of scientific publications can be facilitated and accelerated through the use of lexical-syntactic patterns of ontological design. In this paper, we consider the possibility of automated construction of scientific subject area ontologies based on a heterogeneous patterns system of ontological design. This system includes ontological design patterns and is intended for ontology developers. System also includes automatically built lexical and syntactic patterns, which help to automatic replenishment of the ontology with information extracted from natural language texts.
Soil erosion analysis based on machine learning method Bolsynbek, Mukhammed; Abdikerimova, Gulzira; Serikbayeva, Sandugash; Batyrkhanov, Ardak; Shrymbay, Dana; Taszhurekova, Zhazira; Zhidekulova, Gulkiz; Shraimanova, Gulmira
Bulletin of Electrical Engineering and Informatics Vol 14, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i6.10452

Abstract

Soil erosion poses a serious environmental and agricultural threat that undermines land productivity, sustainability, and ecosystem stability. This study develops a robust machine learning framework for predicting and analyzing soil erosion across diverse landscapes by integrating advanced remote sensing data, climate indicators, and soil characteristics. Spectral indices such as the normalized difference vegetation index (NDVI), moisture stress index (MSI), and surface albedo were employed to assess vegetation condition, moisture levels, and surface reflectance. The proposed model, based on the extreme gradient boosting (XGBoost) algorithm, classifies erosion stages with up to 99% accuracy, ranging from healthy land to severely degraded areas. The methodology includes comprehensive feature engineering, dataset preprocessing, and model evaluation. Furthermore, a comparative analysis with traditional models (USLE and RUSLE) highlights the superior predictive performance of the proposed approach. The findings offer valuable insights for sensor-based monitoring systems and cloud-based decision-support tools, supporting sustainable land use management, erosion risk mitigation, and effective soil conservation strategies.
The extraction of a brief summary from scientific documents using machine learning methods Murzabekova, Gulden; Mukhamedrakhimova, Galiya; Taszhurekova, Zhazira; Yerbayev, Yerbol; Doumcharieva, Zhanagul; Makhatova, Valentina; Tolganbaeva, Moldir; Serikbayeva, Sandugash
Bulletin of Electrical Engineering and Informatics Vol 14, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i6.10660

Abstract

This study proposes a machine learning-based approach for automatic summarization of scientific documents using a fine-tuned DistilBART model a lightweight and efficient version of the bidirectional and auto-regressive transformers (BART) architecture. The model was trained on a large corpus of 12,540 scientific articles (2015–2023) collected from the arXiv repository, enabling it to effectively capture domain-specific terminology and structural patterns. The proposed pipeline integrates advanced text preprocessing techniques, including tokenization, stopword removal, and stemming, to enhance the quality of semantic representation. Experimental evaluation demonstrates that the fine-tuned DistilBART achieves high summarization performance, with ROUGE-2=0.472 and ROUGE-L=0.602, outperforming baseline transformer-based models. Unlike conventional approaches, the method shows strong applicability beyond academic research, including automated indexing of technical documentation, metadata extraction in digital libraries, and real-time text processing in embedded natural language processing (NLP) systems. The results highlight the potential of transformer-based summarization to accelerate scientific knowledge discovery and improve the efficiency of information retrieval across various domains.