Padmanaban, Kuppan
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Network intrusion detection system by applying ensemble model for smart home Amru, Malothu; Jagadeesh Kannan, Raju; Narasimhan Ganesh, Enthrakandi; Muthumarilakshmi, Surulivelu; Padmanaban, Kuppan; Jeyapriya, Jeyaprakash; Murugan, Subbiah
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3485-3494

Abstract

The exponential advancements in recent technologies for surveillance become an important part of life. Though the internet of things (IoT) has gained more attention to develop smart infrastructure, it also provides a large attack surface for intruders. Therefore, it requires identifying the attacks as soon as possible to provide a secure environment. In this work, the network intrusion detection system, by applying the ensemble model (NIDSE) for Smart Homes is designed to identify the attacks in the smart home devices. The problem of classifying attacks is considered a classification predictive modeling using eXtreme gradient boosting (XGBoosting). It is an ensemble approach where the models are added sequentially to correct the errors until no further improvements or high performance can be made. The performance of the NIDSE is tested on the IoT network intrusion (IoT-NI) dataset. It has various types of network attacks, including host discovery, synchronized sequence number (SYN), acknowledgment (ACK), and hypertext transfer protocol (HTTP) flooding. Results from the cross-validation approach show that the XGBoosting classifier classifies the nine attacks with micro average precision of 94% and macro average precision of 85%.
Advancing chronic pain relief cloud-based remote management with machine learning in healthcare Mohankumar, Nagarajan; Reddy Narani, Sandeep; Asha, Soundararajan; Arivazhagan, Selvam; Rajanarayanan, Subramanian; Padmanaban, Kuppan; Murugan, Subbiah
Indonesian Journal of Electrical Engineering and Computer Science Vol 37, No 2: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v37.i2.pp1042-1052

Abstract

Healthcare providers face a significant challenge in the treatment of chronic pain, requiring creative responses to enhance patient outcomes and streamline healthcare delivery. It suggests using cloud-based remote management with machine learning (ML) to alleviate chronic pain. Wearable device data, electronic health record (EHR) data, and patient-reported outcomes are all inputs into the suggested system’s data analysis pipeline, which combines support vector machines (SVM) with recurrent neural networks (RNN). SVM’s powerful classification skills make it possible to classify patients’ risks and predict how they will react to therapy. RNNs are very good at processing sequential data, which means they may identify trends in patient symptoms and drug adherence over time. By integrating these algorithms, healthcare professionals may create individualized treatment programs that consider each patient’s preferences and specific requirements. Early intervention and proactive treatment of pain symptoms are made possible by the system’s ability to monitor patients in real-time remotely. The system is further improved by using predictive analytics to identify patients who could benefit from extra support services and to forecast when they will have acute pain episodes. The proposed approach can change the game regarding managing chronic pain. It provides data-driven, individualized treatment that improves patient outcomes while cutting healthcare expenses.
Intrusion detection and prevention using Bayesian decision with fuzzy logic system Sekar, Satheeshkumar; Parvathy, Palaniraj Rajidurai; Gupta, Gopal Kumar; Rajagopalan, Thiruvenkadachari; Basavaraddi, Chethan Chandra Subhash Chandra Basappa; Padmanaban, Kuppan; Murugan, Subbiah
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp1200-1208

Abstract

Nowadays, intrusion detection and prevention method has comprehended the notice to decrease the effect of intruders. denial of service (DoS) is an attack that formulates malicious traffic is distributed into an exacting network device. These attackers absorb with a valid network device, the valid device will be compromised to insert malicious traffic. To solve these problems, the Bayesian decision model with a fuzzy logic system based on intrusion detection and prevention (BDFL) is introduced. This mechanism separates the DoS packets based on the type of validation, such as packet and flow validation. The BDFL mechanism uses a fuzzy logic system (FLS) for validating the data packets. Also, the key features of the algorithm are excerpted from data packets and categorized into normal, doubtful, and malicious. Furthermore, the Bayesian decision (BD) decide two queues as malicious and normal. The BDFL mechanism is experimental in a network simulator environment, and the operations are measures regarding DoS attacker detection ratio, delay, traffic load, and throughput.