Ignatovich, Artyom
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Development of a decision-making module in the field of real estate rental using machine learning methods Mukhanova, Ayagoz; Baitemirov, Madiyar; Ignatovich, Artyom; Bayegizova, Aigulim; Tanirbergenov, Adilbek; Tynykulova, Assemgul; Bapiyev, Ideyat; Mukhamedrakhimova, Galiya
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5430-5442

Abstract

The research is aimed at developing a prototype of a decision support information system for managers of a company operating in the real estate rental industry. The system provides tools for data analysis, the use of mathematical models and expert knowledge to solve complex problems. The work analyzes the practical aspects of the design and use of decision support systems and formulates the requirements for the functionality of the system being developed. The Python programming language was used for implementation. The prototype includes machine learning models, expert systems, user interface and reports. Linear regression, data clustering density-based spatial clustering of applications with noise (DBSCAN) and backpropagation methods were implemented to train the classifying perceptron. The developed tool represents a significant contribution to the field of decision support, providing unique analysis and forecasting capabilities in the dynamic real estate rental environment. This prototype is an innovative solution that promotes effective management and strategic decision making in complex real estate business scenarios.
Generating data for predicting court decisions in Kazakhstan using machine learning Ignatovich, Artyom; Yessengeldina, Anar; Baidullayeva, Gulzhakhan; Ussipbekova, Dinara; Jakhanova, Baktykul; Saduakassova, Gulmira; Serimbetov, Bulat; Tynykulova, Assemgul
Bulletin of Electrical Engineering and Informatics Vol 14, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i6.10490

Abstract

This study presents the development of a synthetic dataset and machine learning models for predicting court decisions in Kazakhstan. The dataset contains 100,000 cases generated from the Code of the Republic of Kazakhstan, covering both administrative and criminal offenses. Each record includes attributes such as the age of the accused, offense type and severity, and mitigating or aggravating factors. Regression models were applied to estimate offense severity, level of guilt, and likelihood of penalties, while classification models predicted the offense category, relevant law articles, and sentencing type. Predictions addressed both general outcomes—classifying cases as criminal or administrative—and specific judicial decisions, including fines, imprisonment terms, and other penalties. Classification models achieved 92% accuracy in determining offense category and sentencing type, and regression models reached a root mean squared error (RMSE) of 0.12 for offense severity. Using synthetic data preserves confidentiality while enabling pattern discovery for decision support. The results demonstrate the potential of artificial intelligence (AI) to improve sentencing prediction, prioritize case processing, and enhance transparency in Kazakhstan’s judicial system. Beyond transparency in decision support, the proposed approach also shows potential in crime prevention, workload optimization, and fostering digital transformation within judicial operations.