Al-Mamoori, Dalya Hamzah
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A multilevel boost inverter with removed leakage current and a reduced number of elements for photovoltaic applications Al-Mamoori, Dalya Hamzah; Azli, Naziha Ahmad; Ayob, Shahrin Md.; Albakry, Ali A. Abdullah
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i1.pp312-322

Abstract

Recent research has concerted on transformer-less multilevel inverters (TL-MLIs) due to their high-voltage or high-power capacity for converting the low-voltage output of renewable energy sources to the desired output. Moreover, they yield higher efficiency, lower cost and size than the conventional type. However, these inverters usually suffer from leakage current. The proposed inverter attempts to accommodate this concern to the greatest extent feasible. The proposed inverter structure exhibits a common ground between the input and output ports. Due to this, the total common mode voltage (CMV) is constant. The photovoltaic (PV) source to the grid parasitic capacitor is short-circuited due to this common ground feature, which results in negligible leakage current. The proposed inverter also features a boosting output voltage using only a single voltage source with minimum power devices. The number of output levels can be increased with the modular application of the proposed inverter. Finally, the mathematical analysis for the proposed inverter has been accomplished, and the MATLAB/Simulink simulation results are presented. Also, the results show the output voltage boost capability, zero leakage current and suitable total harmonic distortion for output voltage and current waveforms.
Single-stage transformer less multilevel boost inverter with zero leakage current for PV system Al-Mamoori, Dalya Hamzah; Ayob, Shahrin Md; Arif, M. Saad Bin
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp673-682

Abstract

Transformer less inverters (TIs) are highly efficient and have a high power density, making them a popular choice for grid-connected solar PV applications. However, certain topologies can lead to high-frequency common-mode voltage (CMV), which can cause issues such as high leakage current, electromagnetic interference, and an absence of safety. Our newly developed inverter is designed to be more efficient, cost-effective, and compact than traditional types while also addressing the issue of leakage current. This architecture eliminates leakage current by directly connecting the grid's neutral terminal to the PV's negative polarity, resulting in a low leakage current. Moreover, the inverter increases output voltage using only one voltage source and a few power devices, making it a cost-effective solution. Its modular form allows for an increase in output levels, further enhancing its cost-effectiveness. We conducted a comprehensive mathematical examination, and the MATLAB/Simulink results demonstrate its ability to increase the output voltage, eliminate leakage current, and maintain acceptable output voltage THD and current waveforms. These results and the inverter's safety features showcase significant improvements over traditional inverters and provide a secure and reliable solution for grid-connected solar PV applications.