Claim Missing Document
Check
Articles

Found 2 Documents
Search

Performance of grid-connected photovoltaic systems in Northern and Southern Hemispheres under equatorial climate Abdul Rahim, Yang Ilya Akila; Zainuddin, Hedzlin; Setiawan, Eko Adhi; Madsuha, Alfian Ferdiansyah; Hussin, Mohamad Zhafran; Sulaiman, Shahril Irwan; Ibrahim, Siti Nor Nadhirah
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i2.pp858-873

Abstract

This work studied the actual and simulated technical performance between two grid-connected photovoltaic (GCPV) systems representing opposite latitudes. The system with a capacity of 5.4 kWp installed in Kelantan, Malaysia represents the northern equator, and the 183.6 kWp system installed in Cikarang, Indonesia, denotes the southern equator. The performance was simulated using PVsyst software, which included the energy output (E_outt), reference yield (Y_r), final yield 〖(Y〗_f), performance ratio (PR), and capacity factor (CF). The mean bias error (MBE) between the actual and simulated technical performance were as follows; for system A, the yearly MBE for the E_out, Y_r, Y_f, PR, and CF were -0.4%, 17.1%, -1.4%, -15.8%, and 1.4%, respectively, and for system B, the E_out, Y_r, 〖 Y〗_f, PR, and CF values were 9.80%, 18.3%, 10.0%, -7.2%, and 10.0% respectively. The results have proven that PVsyst has successfully simulated the yearly E_out, 〖 Y〗_f and CF for both systems including PR, for system B, with MBE less than 10%. However, it is noteworthy to highlight that PVsyst significantly overestimated the Y_r of both systems up to 18.3% and conversely underestimated the PR for system A by 15.8%, which highly likely caused by the Meteonorm imported weather data.
Performance monitoring as fault detection approach on AC power output of monocrystalline grid-connected photovoltaics system Muhammad, Nurmalessa; Zaid, Norsyafrina Abdul; Zainuddin, Hedzlin; Yunus, Puteri Nor Ashikin Megat
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i1.pp548-558

Abstract

As per the Malaysian sustainable energy development authority (SEDA), Malaysia has seen a significant growth in renewable energy thanks to the feed-in tariff (FiT) program. However, photovoltaic (PV) systems in tropical countries like Malaysia experience degradation due to technological factors and operating conditions. The effectiveness of PV systems is influenced by geographical location and weather conditions. This research study conducted a comparative analysis between the actual power output PAC_actual and the predicted power output PAC_expected, referred to as the acceptance ratio (AR). The study also assessed the yield and performance ratio (PR) of a PV system situated at the green energy research center (GERC) in Universiti Teknologi MARA, Malaysia. The actual monocrystalline grid-connected photovoltaic (GCPV) system versus predicted AC power and AR were monitored over a year, with MATLAB software used for simulating output power based on real data. According to the Malaysian Standard MS2692:2020, an AR value of 0.9 or higher is required for approval in testing and commissioning tests. The findings indicate that most AR graphs fall below this threshold, and the PR value for each month is below 0.75, suggesting a need for significant system overhaul.